Promlebedka.ru

Авто ДРайв
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронные двигатели с короткозамкнутым ротором монтажная схема

Магнитный пускатель, схема подключения магнитного пускателя, подключение цепей индикации и сигнализации

Магнитный пускатель – это низковольтный комбинированный аппарат, который выполняет функции управления и распределения. Пускатель являет собой контактор, укомплектованный несколькими парами контактов (основные и дополнительные), а также устройствами защиты, например тепловым реле.

Магнитный пускатель применяется, преимущественно, для управления электродвигателями. В зависимости от построенной схемы, данный аппарат выполняет функции пуска-останова, изменения направления вращения (реверс), снижения пусковых токов (путем переключения схемы соединения обмоток двигателя со звезды на треугольник). При наличии укомплектованного теплового реле обеспечивает защиту машин и подключенного к ним оборудования от перегрузки.

Конструктивно магнитные пускатели бывают открытого и закрытого типа (защищенные), реверсивные и нереверсивные. Также данные аппараты классифицируют по таким номинальным параметрам, как ток, напряжение, частота питающей сети. Также указываются номинальные данные электромагнита пускателя. Это необходимо для того, чтобы правильно его подключить в схеме. Например, если пускатель коммутирует три фазы переменного тока 380 В, его электромагнит (катушка) расчитана также на 380 В, то для ее подключения берется две фазы. Если катушка расчитана на 220 В, то для подключения ее в схему необходим нулевой провод и фаза.

Особенности электрических двигателей

Устройство синхронных электродвигателей очень напоминает синхронный генератор. Таким образом, принципиальная схема электрического двигателя данной модификации, отличается от асинхронных моделей. При одинаковой частоте электрического тока в сети, скорость их вращения остается постоянной, вне зависимости от нагрузки. В отличие от асинхронных, у этих моделей не происходит потребления из сети реактивной энергии. Эта энергия отдается в сеть, таким образом, перекрывая реактивную энергию, потребляемую другими источниками.

Применение синхронных электродвигателей не допускает частых пусков, поэтому, как правило, их используют в условиях относительно неизменной нагрузки, при необходимости обеспечения постоянной скорости вращения.

Следует отдельно отметить двигатели постоянного тока, используемые в условиях необходимости плавного регулирования скоростей. Эти действия производятся с помощью изменяемого тока в якоре или с применением устройств на полупроводниках. Однако, такие двигатели стали применяться все реже из-за их больших размеров, высокой стоимости и значительных потерь в процессе эксплуатации.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.
Читать еще:  Двигатель g4jp если снять ремень балансиров что будет

  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1. Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Особенности электрических двигателей

Такая схема показана на рис. Это энергия рассеивается как тепло.

Поэтому контактор К2М в этот период не включается. Шаговый режим работы двигателя создает благоприятные условия наладки.

Фазное напряжение — разница потенциалов между началом и концом одной фазы. При замыкании контакта К1А.

Схема управления асинхронным электродвигателем с коротко-замкнутым ротором с использованием магнитного пускателя и воздушного автоматического выключателя. Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Нереверсивная схема управления асинхронного двигателя.

Они во многом играют важную роль, например, подшипники качения, обеспечивают возможность плавности хода, корпус защищает от механического воздействия на основные рабочие части, вентилятор обеспечивает обдув двигателя и отвод тепла, выделяемого при работе, но на принцип преобразования электрической энергии в механическую не влияют. Применение синхронных электродвигателей не допускает частых пусков, поэтому, как правило, их используют в условиях относительно неизменной нагрузки, при необходимости обеспечения постоянной скорости вращения. Реверсивный пуск асинхронного двигателя с короткозамкнутым ротором Такая схема запуска приведена на рис.

Это позволяет проводить смену инструмента, наладку станка с легким поворотом приводного вала и ротора электродвигателя. Особенности электрических двигателей Устройство синхронных электродвигателей очень напоминает синхронный генератор. Изменение направления вращения реверс ротор двигателя меняет при изменении порядка чередования фаз на его статоре.

Главные вкладки

Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения. Применение двухцепных кнопок позволяет осуществить дополнительную электрическую блокировку, исключающую одновременное включение контакторов K1 и К2, а также К3 и К4. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, так как какой-либо из пускателей при нажатии на обе кнопки «Пуск» включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя. Поэтому Д2М не сразу включится и его размыкающий контакт Д2А. Электродвигатель подключается к сети при помощи кнопки S1, контакта K1A и силовых контактов К1 1—3 М.

Читать еще:  Что такое турбированный двигатель и срок службы двигателя

Реверсивная схема подключения электродвигателя Как изменить направление вращения электродвигателя? Обычно реверсивный магнитный пускатель состоит из двух контакторов, заключенных в один корпус. Двигатель вращается расторможенным. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. В частности, на базе этой схемы создаются схемы управления главным электродвигателем лесопильных рам.
Реверсивная схема подключения магнитного пускателя

Плавный запуск двигателя с фазным ротором

Система плавного разгона электродвигателя с фазным ротором работает автоматически. Оператор нажимает кнопку «Пуск», дальше автоматика все делает сама.

Главный контактор подключает к трехфазному напряжению обмотку статора. Двигатель начинает вращение с минимально возможной скоростью, так как в цепь его ротора включены резисторы с максимально возможным сопротивлением.

Через фиксированную задержку, формируемую реле времени, включается первый контактор, шунтирующий первую секцию сопротивлений в цепи ротора. Скорость вращения немного возрастает. Проходит еще время, второе реле времени запускает следующий контактор. Шунтируется следующая секция сопротивлений, ток в цепи ротора возрастает, скорость вращения – увеличивается. И так далее, до полного исключения всех сопротивлений из цепи ротора. При этом электродвигатель выходит на номинальные обороты.

Схема плавного пуска асинхронного электродвигателя с фазным ротором

Число ступеней разгона выбирается из условий тяжести запуска. Разгон получается не таким уж плавным, ток в статоре возрастает ступенями. При старте и переходе на каждую последующую ступень, электродвигатель все равно потребляет пусковой ток, хоть и меньшего значения.

Этого недостатка лишены электродвигатели, для разгона которых используются жидкостные пускатели (или стартеры). В них в качестве резистора используется жидкость с высоким удельным сопротивлением. Это – дистиллированная вода с растворенной в ней специальной солью. Уменьшение сопротивления достигается за счет уменьшения расстояния между электродами, помещенными в эту жидкость. Электроды приводятся в движение небольшим электродвигателем через червячную передачу. За счет этого уменьшение сопротивления в цепи ротора и разгон электродвигателя происходят плавно.

Асинхронный двигатель — общий взгляд

Статистику наиболее широко используемых электрических моторов возглавляет именно трехфазный асинхронный двигатель.

Асинхронные моторы богатым ассортиментом присутствуют на рынке. Но какая из машин выглядит лучшей в техническом плане или применительно к условиям использования?

Практически 80% механических мощностей, используемых всеми отраслями экономики, обеспечиваются трехфазными асинхронными двигателями.

Деловая ставка на этот вид электрических машин обусловлена:

  • простой надёжной конструкцией,
  • низкой стоимостью,
  • хорошими рабочими характеристиками,
  • отсутствием сложных схем коммутации,
  • возможностями регулирования скорости.

Асинхронным называют двигатель по причине очевидной. Вращательный момент такой конструкции не даёт стабильной синхронности движения.

Мощность трехфазного асинхронного двигателя транспортируется от статора к ротору посредством индуктивной связи.

Конструктивный расклад: 1 — крышка корпуса передняя; 2 — стержень вала; 3 — арматура; 4 — лопасти захвата воздуха для охлаждения; 5 — сердечник; 6 — рама; 7 — клеммная коробка; 8 — крышка корпуса задняя

Электрическая машина наделена двумя основными деталями конструкции:

  1. Статор.
  2. Ротор.

Статор — стационарная часть конструкции с обмотками медным проводом, на которые подается трехфазный электрический ток.

Ротор — подвижная деталь конструкции (создаёт момент вращения). Передаёт механическое усилие нагрузке через стальной вал. Ротор трехфазного асинхронного двигателя классифицируется двумя видами:

  1. Короткозамкнутый.
  2. Фазный (фазовращающий, токосъёмный, раневой).

Соответственно, в зависимости от вида конструкции детали, трехфазный асинхронный двигатель классифицируется как:

  1. Мотор короткозамкнутого действия.
  2. Мотор фазного действия.

Конструкция статора для обоих видов двигателей, при этом, остаётся неизменной.

Набор основных деталей классической конструкции, которая встречается повсеместно. В зависимости от мощности могут изменяться лишь габаритные размеры компонентов

Другими частями — составляющими конструкции, являются: стальной вал, подшипники, крыльчатка охлаждения, клеммная коробка.

Особенности конструкции статора

Конструкция статора трехфазного асинхронного двигателя содержит трех базовых компонента:

  1. Раму.
  2. Сердечник.
  3. Обмотки возбуждения.

Статор выступает частью корпуса трехфазного асинхронного двигателя. Его основная функция — крепление сердечника статора и проводную намотку.

Внешняя область статора выполняет функцию покрытия, обеспечивает защиту и механическую прочность внутренним частям асинхронного двигателя.

Рама статора изготовлена из литой или свариваемой стали. Каркас трехфазного асинхронного двигателя нуждается в прочности и жесткости. Длина воздушного зазора между рамой и ротором очень мала.

Если не обеспечить прочность и жёсткость конструкции, нарушается концентрическое положение ротора. Такое состояние приведет к разбросу баланса магнитного натяжения.

Основная функция сердечника статора — перенос переменного магнитного потока. С целью уменьшения потерь вихревых токов, сердечник статора ламинируется. Создаются наслоённые тиснения толщиной около 0,4-0,5 мм.

Статорный сердечник — по сути, набор из многочисленных металлических пластин, плотно спрессованных друг с другом. Для намотки медного провода оставлены слоты

Все тиснения спрессованы в единое целое, образуя сердечник статора, жёстко скрепленный рамой. Штамповка обычно содержит элементы кремниевой стали, что способствует уменьшению гистерезисных потерь при работе двигателя.

Виды асинхронных моторов

Асинхронный двигатель с короткозамкнутым ротором претендует на лидерство среди всех видов моторов переменного тока. Это оборудование часто используется для нужд промышленности.

Читать еще:  Характеристики двигателя рено сандеро степвей 82л с

Практика применения показала главные свойства этого вида электродвигателей:

  • низкая рыночная стоимость,
  • надежность эксплуатации,
  • эффективность работы,
  • низкие требования в обслуживании.

Другой вид оборудования – асинхронный двигатель с токосъёмными кольцами (с фазным якорем), отличается куда меньшей потребностью применения в промышленности.

Мотор с токосъёмником: 1 — статорный сердечник; 2 — корпус (рама); 3 — кронштейн; 4 — вал; 5 — подшипник; 6 — якорь; 7 — группа щёток; 8 — устройство коммутации

Не более 5% — 10% моторов с токосъёмными кольцами используются в индустрии.

Объясняется этот момент следующими конструктивными недостатками асинхронных моторов с фазным вращением:

  • потребность частого обслуживания,
  • значительный расход меди,
  • сложность конструкции для ремонта.

Различия между видами асинхронных моторов

Одним из ярко выраженных различий между фазными и короткозамкнутыми двигателями видится фактор управления.

Электродвигатель, наделённый фазным токосъёмником, допускает включение в цепь внешнюю нагрузку (сопротивление) для управления скоростью двигателя.

В свою очередь схема двигателя с короткозамкнутым ротором не предполагает добавления любой внешней цепи, т.к. пазы ротора прорезаны вплоть до его торцевых граней.

Таким выглядит один из конструктивных вариантов токосъёмника на три фазы. Здесь следует отметить конструкционную особенность — несколько скошенное расположение слотов

Конструкция ротора фазовращающего типа представлена в виде ламинированного сердечника, наделённого слотами, расположенными параллельно один другому.

Каждый слот содержит по одному стержню и несёт трёхфазную изолированную обмотку. Причём число витков на стержнях равно числу витков обмоток статора.

Три концевых вывода обмотки подключаются, образуя нейтраль «звезды», а начальные выводы соединены с тремя медными кольцами, размещёнными на валу. С кольцами контактируют токосъёмные щётки.

Короткозамкнутый ротор изготовлен несколько иначе. Слоты на сердечнике не располагаются параллельно. Эти элементы ротора скошены под некоторым углом.

Элементы КЗР: 1 — алюминиевое кольцо; 2, 7 — вал стальной; 3, 6 — лопасти алюминиевые; 4 — алюминиевые стержни; 5 — ламинированный стальной сердечник

Сердечник сделан многослойным, с прорезями по всей длине окружности, замкнутыми на торцах сердечника медным или алюминиевым кольцом.

Конфигурация скошенных слотов короткозамкнутого ротора имеет свои преимущества:

  • снижаются шумы электродвигателя при работе,
  • обеспечивается плавный крутящий момент,
  • уменьшается магнитная блокировка статора по отношению к ротору,
  • увеличивается сопротивление ротора за счёт длинных проводников стержней.

Особенности для применения на практике

Изучая возможности применения тех или иных конструкций на практике, следует отметить более высокую эффективность моторов с короткозамкнутым ротором.

Относительно эффективности, что показывают асинхронные электромоторы с токосъёмными кольцами, короткозамкнутые выглядят явно лучше. Коэффициент мощности у фазных моторов также существенно ниже.

Однако преимущественной стороной фазных конструкций является возможность регулировать скорость вращения, тогда как короткозамкнутые модификации таких возможностей не дают.

Но регулировка скорости вращения асинхронного двигателя с короткозамкнутым ротором возможна при помощи частотного преобразователя.

Ещё одно преимущество асинхронного электродвигателя с фазным ротором – низкий пусковой ток. Для двигателей с короткозамкнутым ротором этот параметр существенно выше.

Поэтому электродвигатели с фазным ротором, как правило, используются на агрегатном оборудовании, где важен высокий пусковой момент:

  • подъёмники промышленные,
  • лифты гражданские,
  • краны строительные,
  • лебёдки производственные и т.п.

Тогда как другой вид моторов (короткозамкнутых) применяется часто в качестве приводов сверлильных, токарных станков и другой техники, где отсутствует потребность высокого пускового момента.

Учебное видео пособие по двигателям разного вида

1 – станина, 2 – сердечник статора, 3 – обмотка статора, 4 – сердечник ротора с короткозамкнутой обмоткой, 5 – вал

Доливо-Добровольский выяснил, что у таких двигателей есть очень серьёзный недостаток – ограниченный пусковой момент. Он также назвал причину этого недостатка – сильно закороченный ротор. Им же была предложена конструкция электродвигателя с фазным ротором.

Асинхронные двигатели подразделяются на два вида, одни имеют короткозамкнутый ротор, вторые – фазный. Большинство используемых электрических двигателей являются асинхронными, имеющими короткозамкнутый ротор. Их широкое применение в первую очередь обуславливается простотой в обслуживании, эксплуатации, простотой конструкции, низкой стоимостью и высокой надежностью. Что касается недостатков, то такие модели имеют малый пусковой и большой спусковой ток, чувствительны к изменениям параметров в сети, для плавного регулирования скорости понадобиться преобразователь частоты.

Помимо этого асинхронные двигатели из сети потребляют реактивную мощность. Предел их применения определяется мощностью системы электроснабжения определенного предприятия. Большинство пусковых токов при малой мощности системы могут создавать значительные понижения напряжения.

При использовании двигателей с фазным ротором можно снизить пусковой ток, тем самым увеличить пусковой момент, благодаря введению пусковых реостатов в цепь ротора. Правда, из-за усложненной конструкции и увеличения стоимости применение данных электродвигателей ограничено. В основном их применяют как приводы механизмов с тяжелыми пусковыми условиями. Чтобы уменьшить пусковые токи асинхронного двигателя, который имеет короткозамкнутый ротор, необходимо использовать преобразователь частоты или устройство с плавным пуском.

Системы, которые имеют ступенчатое изменение скорости, такие как лифты, лучше всего работают на многоскоростных асинхронных двигателях. Механизмы, которые требуют остановку на некоторое время и фиксацию вала при исчезновении напряжения питания, работают на асинхронных двигателях с электромагнитным тормозом, такие как лебедки или металлообрабатывающие станки.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector