Promlebedka.ru

Авто ДРайв
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что будет если двигатель работает на пониженном напряжении

НЕДОСТАТОЧНЫЙ ВРАЩАЮЩИЙ МОМЕНТ ЭЛЕКТРОДВИГАТЕЛЯ
3. Вращающий момент отсутствует в некоторых положениях ротора

Эта неисправность характеризуется тем, что при включении электродвигателя в сеть ротор занимает устойчивое неподвижное положение. Возможны две причины этого явления: а) неблагоприятное соотношение между числами пазов статора и ротора для данного числа полюсов электродвигателя; б) задевание ротором статора вследствие одностороннего магнитного притяжения.
Первая причина вызывает, как правило, несколько устойчивых неподвижных положений ротора. Если установить ротор в другое положение и повторно включить электродвигатель в сеть, то в большинстве случаев происходит поворот ротора на небольшой угол до следующего устойчивого положения. Описанное явление наблюдается в электродвигателе с короткозамкнутой обмоткой ротора, если с целью получения другой скорости вращения произведена замена обмотки статора и не соблюдено благоприятное соотношение чисел пазов статора и ротора для необходимого числа полюсов. В новых электродвигателях этот недостаток не встречается, так как при изготовлении их подбирают необходимое число пазов статора и ротора или выполняют скос пазов таким образом, чтобы исключить местные силы притяжения между статором и ротором, вызывающие устойчивое неподвижное положение ротора. Устранение этой причины устойчивого неподвижного положения ротора является трудной и не всегда выполнимой задачей. В некоторых случаях удается восстановить удовлетворительные пусковые характеристики электродвигателя, если разрезать в нескольких местах короткозамыкающие кольца или же уменьшить сечение отдельных стержней беличьей клетки ротора. Для более подробных рекомендаций необходимо получить консультации специалиста по электрическим машинам.
Устойчивое неподвижное положение ротора вследствие одностороннего магнитного притяжения, как правило, вызывается нарушением равномерности зазора между статором и ротором (см. раздел 25).

4. Уменьшенный вращающий момент при низкой скорости вращения ротора

Эта неисправность чаще всего имеет место в асинхронных двигателях с короткозамкнутой обмоткой ротора. Устойчивая скорость вращения при пуске электродвигателя под нагрузкой получается в несколько раз меньше номинальной. В большинстве случаев она составляет 1/7 часть номинальной скорости вращения.
При пуске электродвигателя без нагрузки ротор обычно достигает номинальной скорости вращения и последующая нагрузка двигателя не осложняет его работы.
Указанные затруднения при пуске электродвигателя под нагрузкой обусловлены наличием тормозных моментов, вызванных высшими гармоническими магнитного потока в зазоре между статором и ротором. Кроме первой (основной) гармонической магнитного потока в зазоре имеются и его более высокие нечетные гармонические. В статоре трехфазной обмотки при симметричном трехфазном напряжении на зажимах электродвигателя третья и кратные трем гармонические (девятая, пятнадцатая и т. д.) отсутствуют. Из высших гармонических наибольшее влияние на работу электродвигателя оказывает пятая и седьмая. Пятая и первая гармонические вращаются в противоположные стороны, поэтому создаваемые ими электромагнитные моменты имеют противоположные направления. На рис. 5 электромагнитный момент первой гармонической показан линией 1 и пятой гармонической — линией 3. Седьмая гармоническая вращается в ту же сторону, что и первая гармоническая, но со скоростью в семь раз меньшей скорости вращения первой гармонической. Создаваемый ею электромагнитный момент показан линией 2.

Рис. 5. Механические характеристики для гармонических составляющих магнитного потока

Из приведенных механических характеристик для различных гармонических магнитного потока следует, что пятая гармоническая магнитного потока оказывает тормозное действие во всем диапазоне скоростей вращения ротора, а седьмая гармоническая увеличивает начальное значение пускового момента, но уменьшает вращающий момент электродвигателя в области скорости вращения ротора выше 1/7 номинальной. Эти тормозные моменты почти не влияют на величину максимального момента электродвигателя, так что нагрузка его при вращающемся роторе не нарушает нормальной работы.
Так же как и устойчивое неподвижное положение ротора, устойчивая низкая скорость вращения его обычно наблюдается после замены обмотки статора с целью получения другой скорости вращения. Иногда эта неисправность может быть устранена уменьшением шага обмотки статора. Шаг катушки обмотки в этом случае должен быть близким к 0,86 полюсного давления.
В электродвигателях с фазной обмоткой ротора в некоторых случаях наблюдается устойчивая скорость вращения ротора, равная половине номинальной. Эта неисправность вызывается появлением тормозного момента вследствие обрыва одной фазы ротора. Обрыв может быть в обмотке ротора, в проводе, соединяющем щетки с реостатом, и в реостате. Однако более вероятным является нарушение целости соединений отдельных элементов цепи ротора, поэтому прежде всего следует проверить все контакты, в том числе и скользящие, в электродвигателе и в реостате. Место обрыва цепи можно установить одним из описанных ранее способов.

5. Уменьшенный вращающий момент

Уменьшение вращающего момента может иметь место у исправного электродвигателя и в случае повреждения одной из фазных обмоток статора при их соединении треугольником. Причины уменьшения вращающего момента у исправного электродвигателя обычно связаны с пониженным напряжением сети и иногда с большим сопротивлением цепи ротора (при фазной обмотке). В этом случае значение тока в линейных проводах одинаково, а уровень шума пониженный. При пониженном напряжении и номинальной нагрузке электродвигателя наблюдается повышенное нагревание его обмотки.
Вращающий момент электродвигателя пропорционален магнитному потоку и току в обмотке ротора. Одновременно с уменьшением напряжения на зажимах электродвигателя уменьшается магнитный поток. Если скорость вращения ротора остается неизменной, то э. д.с. и ток в обмотке ротора также уменьшается. В этих условиях вращающий момент электродвигателя зависит от напряжения во второй степени. Механические характеристики асинхронного двигателя для двух значений напряжения показаны на рис. 6 (1-для номинального, 2-для уменьшенного в 1,73 раза).

Рис 6. Механические характеристики электродвигателя

Уменьшенное напряжение на обмотках электродвигателя может быть и при номинальном напряжении сети в случае ошибочного соединения фазных обмоток статора — звездой вместо треугольника. Например, если двигатель при соединении фазных обмоток треугольником предназначен для включения в сеть 220 В, то при соединении фазных обмоток звездой напряжение на зажимах электродвигателя должно быть 380 В и напряжение сети 220 В будет в 1,73 раза меньше необходимого. В рассмотренном примере максимальный и пусковой моменты электродвигателя уменьшаются в 3 раза и электродвигатель может работать только при значительно уменьшенной нагрузке, так как максимальный вращающий момент становится меньше номинального момента.
Обычно электродвигатель работает в таких условиях, когда нагрузка остается постоянной или мало изменяется, и тогда для создания номинального вращающего момента при пониженном напряжении на зажимах электродвигателя требуется больший ток ротора, увеличение которого происходит за счет уменьшения скорости вращения ротора. Это уменьшение скорости вызывается понижением напряжения сети и зависит от сопротивления цепи ротора. При малом сопротивлении (например, замкнутая накоротко фазная обмотка ротора) уменьшение скорости вращения ротора незначительно, а при большом сопротивлении (например, беличья клетка ротора электродвигателя небольшой мощности) становится очень заметным.

Читать еще:  Где находятся датчики температуры двигателя ауди а6 с5

Увеличенному току в обмотке ротора соответствует увеличенный ток в обмотке статора. С увеличением тока происходит интенсивное преобразование электрической энергии в тепловую в обмотках и значительное повышение их температуры. Таким образом, повышенное нагревание обмоток и уменьшенная скорость вращения ротора при номинальной нагрузке являются косвенными признаками пониженного напряжения на зажимах электродвигателя.
Пониженное напряжение может быть следствием общей большой нагрузки электрической сети. Проверка напряжения производится непосредственным изменением его вольтметром на зажимах электродвигателя. Пределы допускаемого отклонения напряжения указаны в разделе 7.

Рис. 7. Расположение выводов фазных обмоток статора и перемычек для соединения: а — звездой, б — треугольником

Если обмотка статора имеет шесть выводных концов, то по внешнему виду соединений фазных обмоток можно определить, звездой или треугольником выполнено соединение. В коробке зажимов выводы обмотки статора располагаются в два ряда, в одном ряду концы обмотки, в другом — их начала (рис. 7). Начала и концы отдельных фазных обмоток смешены относительно друг друга. Для соединения фазных обмоток звездой все зажимы нижнего ряда объединяют перемычками, а зажимы верхнего ряда включают в сеть (рис. 7, а).При соединении треугольником объединяют перемычками попарно зажимы верхнего и нижнего рядов и к общим точкам фазных обмоток подводят провода сети (рис. 7, б).
В некоторых электродвигателях выводы выполнены свободными гибкими проводами, пропущенными через два или три отверстия корпуса. В одном из двух отверстий размещаются начала фазных обмоток, в другом — их концы.
Для соединения Звездой следует объединить выводы одного отверстия в общую точку, а для соединения треугольником необходимо установить принадлежность выводов отдельным фазным обмоткам и соединить попарно выводы из обоих отверстий. В каждом из трех отверстий размещаются начало и конец разных обмоток. Треугольник получается путем соединения попарно выводов каждого отверстия, а для соединения звездой необходимо установить принадлежность выводов отдельным фазным обмоткам и объединить в общую точку три вывода (по одному из каждого отверстия).

Для постоянной скорости вращения в устойчивой области механической характеристики (от нулевой нагрузки до максимального вращающего момента) при увеличенном активном сопротивлении обмотки ротора получается уменьшенный вращающий момент. Это объясняется тем, что в указанных условиях э.д.с. обмотки ротора остается постоянной и ток уменьшается. Если нагрузочный момент сохраняется постоянным, то при увеличении активного сопротивления цепи ротора должна уменьшаться скорость вращения ротора для сохранения тока неизменным в его обмотке.
Иногда эта закономерность используется для регулирования скорости вращения ротора с фазной обмоткой или для улучшения работы электропривода при кратковременных больших увеличениях нагрузки.
Если повышенное активное сопротивление цепи ротора не предусмотрено схемой электропривода, то вызываемое им уменьшение вращающего момента (или при постоянной нагрузке уменьшение скорости вращения ротора) снижает производительность приводимой электродвигателем машины.
Выявить причину уменьшения вращающего момента можно измерением сопротивления участка цепи ротора, состоящего из соединительных проводов между зажимами электродвигателя и реостатом и остающейся постоянно включенной частью реостата, или же измерением напряжения на этом участке роторной цепи. При измерении напряжения не требуется разъединять цепь ротора.
Для уменьшения сопротивления роторной цепи необходимо приблизить реостат к электродвигателю или увеличить сечение проводов между зажимами ротора и реостата.
Работа электродвигателя в случае обрыва в одной фазной обмотке статора при соединении треугольником сопровождается повышенным шумом и вибрацией. Величина тока в линейных проводах различна, ток в линейном проводе, присоединенном к неповрежденным обмоткам, значительно больше тока в других проводах. Так как энергия подводится только к двум фазным обмоткам, то при номинальной нагрузке электродвигателя ток в неповрежденных фазных обмотках будет больше номинального, что вызовет повышенное нагревание этих обмоток. Температура поврежденной фазной обмотки ниже температуры двух других обмоток, и это может быть использовано для ее выявления, так же как различие тока в линейных проводах. На рис 8, а показано включение электродвигателя в сеть при наличии обрыва в фазной обмотке С2-С5. В этом случае показания амперметров А2 и A3 будет в 1,73 раза меньше, амперметра А1.

Рис. 8. Нахождение обрыва фазной обмотки при помощи: а — ампер метра, б — мегомметра

Проверку обмотки статора можно легко выполнить, если к зажимам электродвигателя выведены шесть концов фазных обмоток. Тогда путем проверки сопротивления отдельных фазных обмоток одним из известных способов, например мегомметром (рис. 8, б) или омметром, можно выявить поврежденную фазную обмотку. При наличии однофазного напряжения 220 В можно воспользоваться вольтметром или лампой накаливания. Если соединения фазных обмоток выполнены внутри электродвигателя, то обрыв можно обнаружить путем измерения сопротивления между зажимами. Из трех измерений две величины сопротивления будут одинаковы, а третья — между зажимами с поврежденной фазной обмоткой — вдвое больше. Можно также поочередно подводить через амперметр однофазное пониженное напряжение к двум из трех зажимов обмотки статора. Ток между зажимами с поврежденной обмоткой будет вдвое меньше тока между другими зажимами.
Если выявлена поврежденная фазная обмотка, то дальнейшее нахождение места обрыва производится, как указано в разделе 2 (см. рис. 4).

Почему пониженное или повышенное напряжение опасно для насоса

Производители скважинных насосов в их паспортах указывают, что напряжение в питающей сети должно находиться в определенных пределах. Как правило, указываются пределы минус 10% – +6% (учитывая допуски в значении напряжения – 220 – 240В и потери в питающем кабеле). Другими словами, в скважинный насос должно входить напряжение, лежащее в пределах 180 – 255В. Рассмотрим, почему работа насоса при напряжении, которое выше или ниже приведенных значений может привести к его поломке.

Повышенное напряжение

С повышенным напряжением все понятно. Повышенное напряжение – это автоматически повышенный ток, а значит повышенное тепловыделение в обмотке электрического двигателя. При длительной работе в таком режиме из-за повышенного тепловыделения изоляция обмотки быстро стареет, срок службы ее резко уменьшается и, в конце концов, произойдет короткое замыкание в электродвигателе. В этом случае требуется минимум перемотка электродвигателя.

Пониженное напряжение

А в чем опасность пониженного напряжения? Дело в том, что при понижении напряжения происходит ухудшение КПД насоса и автоматически возрастает потребляемая мощность, а значит и ток. Так, при падении напряжения на 10%, ток увеличивается на 5%, а температура возрастает на 20%! При этом не забываем, что насос охлаждается перекачиваемой водой. Уменьшился КПД – упал объем перекачиваемой воды – ухудшился теплоотвод – возросла температура насоса. В этом случае возможны следующие варианты событий:

Читать еще:  Газель с двигателем камминз не заводится причины

1.Оплавятся подшипники вала скважинного насоса.

2.Произойдет короткое замыкание в обмотке электродвигателя.

3.Нарушится герметичность резиновых уплотнений в насосе, произойдет попадание внутрь воды и опять же таки последует короткое замыкание.

Как видим, пониженное напряжение даже более опасно, чем повышенное. Так как замена подшипника, а может быть и вала – дело еще более хлопотное, чем перемотка электродвигателя.

Как избежать скачков напряжения?

Начнем с того, что некоторые системы управления защищают насосы от скачков напряжения, выключая скважинный насос (при помощи защитных реле напряжения типа СР-720). А если такие скачки происходят постоянно? Тогда насос долгое время будет не работать, и о каком качественно водоснабжении может идти речь. Единственным выходом в этой ситуации является установка стабилизатора напряжения. Но тут возникает одно, но большое НО. Дело в том, что при включении насоса пусковые тока увеличиваются в 2-3 раза. Поэтому стабилизатор должен рассчитываться нам мощность, которая минимум в 2-3 раза превышает номинальную мощность насоса. А еще же должен быть запас. Поэтому надо мощность двигателя умножать на пять. То есть, если скважинный насос имеет мощность 1 кВт, стабилизатор должен имеет 5 кВт! Стабилизаторы такой мощности стоят минимум 20 тыс. рублей (типа стабилизатора переменного напряжения «Штиль» R 4500, 4,5 кВА, стоимостью 23 тыс. рублей).

С нашей точки зрения целесообразнее использовать софтстартер, который позволяет производить плавный пуск насоса. В этом случае пусковые токи мало чем отличаются от номинальных и достаточно уже будет стабилизатора мощностью 1.5 кВт для однокиловаттного насоса. В этом случае стоимость составит: 4000 руб. (софтстартер типа PSR3-600-70 1,5кВт) + 6-8 тыс. рублей (стабилизатор типа «Штиль» R 1200, 1,2 кВА (6500 руб.) или «Штиль» R 2000, 2 кВА (10 тыс. рублей)). Итого 10-12 тыс. рублей плюс система плавного пуска, которая значительно увеличивает срок службы электродвигателя насоса.

Что делать при низком напряжении

Низкое напряжение в сети

Выходит что, несмотря на то, что прибор учета считает правильно как при низком, так и при нормальном уровне напряжения, при низком напряжении в сети вы все равно платите существенно больше.

И если отклонение от нормы в 230 Вольт составляет больше 5% долговременно и 10% кратковременно (согласно ГОСТ 29322-2014 ), следует обратиться в вашу сбытовую организацию на низкое качество электроэнергии.

После проверок они обязаны будут устранить выявленные нарушения и обеспечить вас качественной электроэнергией.

Если вам понравился материал, тогда обязательно оцените его лайком и репостом, пусть больше людей узнают, что низкое напряжение в сети — это плохо.

Поделиться ссылкой:

Похожие записи

3 комментария

Что за ерунду Вы написали? Чайник, равно как и лампа накаливания — резистивная нагрузка со вполне определённым сопротивлением, которое не зависит от приложенного напряжения. В соответствии с законом Ома ток будет прямо пропорционален напряжению, и мощность, потреблённая из сети при пониженном напряжении будет меньше номинальной. Потому чайник и будет греться до кипения дольше.И счётчик, каким бы он ни был, насчитает примерно столько же (счётчик считает энергию). Лампа накаливания будет светить тусклее, и счётчик насчитает меньше (если, конечно, Вы вместо лампы в 60 Ватт не вкрутите сотку). Другое дело, современная электроника с импульсными источниками питания, он при пониженном входном напряжении потребляет больше, обеспечивая ту же мощность на выходе.

Ок, попробуйте объяснить вариант с микроволновой печью… Если, при нормальном напряжении блюдо нагревается минуты за 2, то при низкому уже минуты 4… А магнетрон при этом потребляет в единицу времени примерно столько же! И про холодильник актуально тоже! Так что, Вы тоже подучите матчасть, без этого, лучше не комментируйте!

Автору статьи за устройство счётчиков -5. А за выводы о напряжении » Шекспиру» -2. Чушь! Автор даже не представился.

Итак, почему греется электродвигатель и как не допустить его перегрева?

Относиться к проблеме нагрева двигателя нужно с особым вниманием, ведь изоляция его обмотки имеет слабое сопротивление повышенным температурам. Зачастую нормой является температура, в пределах 90-95 ºС. Существуют электромоторы обмотка, в которых рассчитана на максимальную температуру в 130 ºС.
Но в любом случае, во время эксплуатации могут возникать аварийные перегрузки или технологические неисправности, которые приводят к нагреву, являющемуся причиной выхода из строя изоляции. После чего зачастую происходит короткое замыкание. В результате, для восстановления работоспособности устройства, потребуется дорогостоящий ремонт двигателя или его полная замена. Менее затратным будет выяснить причину нагрева электромотора и устранить ее, нежели покупать новый двигатель или заказывать его перемотку.

Зачастую причиной перегрева двигателя является:

  • неисправность линий электропередач;
  • повышенные рабочие нагрузки;
  • износ щеток электромотора;
  • перекос вала;
  • плохая смазка и повышенный износ подшипников;
  • выход из строя или малоэффективная работа охлаждающего двигатель устройства (вентилятора).

Выяснить причину нагрева мотора можно, если включить его без нагрузки. Но предварительно необходимо изучить паспорт этого прибора, в котором отражена информация о максимальной нагрузке.

В том случае, если она больше фактической, нужно вначале снизить объемы выполняемых агрегатом работ.
О неправильности технологического монтажа свидетельствует идеальная работа двигателя без нагрузки. Но если он без нагрузки греется, то причины кроются внутри этого агрегата.

Многие из них, устранить не составит труда, например, если причиной повышения температуры есть неработающий вентилятор охлаждения. Он может быть плохо смазан или забит пылью, и чтобы восстановить нормальный режим его работы требуется всего лишь смазать или очистить от пыли вентилятор.
Независимо от того, что послужило причиной повышения температуры электромотора, эту неисправность необходимо устранить и как можно скорее. Так как дальнейшая эксплуатация двигателя может привести к более серьезным проблемам, его эксплуатационный ресурс снизится в несколько раз.
Чаще всего проблема повышенной температуры электродвигателя решается путем смазки подшипника, стабилизации напряжения в электросети, которая питает тот или иной силовой агрегат, удаление грязи и пыли с поверхностей обмотки. В том случае если не получается произвести выравнивание напряжения в сети необходимо уменьшить нагрузку на мотор. При этом нормально функционировать он будет при напряжении, которое меньше номинального не более чем на 20 %. Устранение более сложных причин нагрева осуществляется путем чистки или замены щеток, перемотки двигателя.

В случае если на повышение температуры двигателя влияет нагрев подшипника, то необходимо в первую очередь осуществить его чистку, убедиться в том, что крышки подшипника плотно закрыты. Если подшипник открылся в результате сильной вибрации то, скорее всего в него попала грязь и пыль. Чистка детали производится путем ее промывки керосином, после чего необходимо произвести продув сжатым воздухом.

Читать еще:  Двигатель ваз как проверить датчик давления масла

В завершение восстановления нормальной работоспособности подшипника производится его наполнение чистой смазкой, характеристики которой соответствуют скорости работы электромотора. Добавлять ее нужно небольшими порциями с использованием специальных приспособлений. При этом важно не переборщить с количеством смазки, иначе скольжение будет затруднено, и мотор будет по-прежнему испытывать нагрузку.
Кроме этого, причиной нагрева мотора может быть проблема с питающим напряжением. Это может быть либо повышенное, либо пониженное напряжение, пропадание или перекос фаз. При такой ситуации, мотор работает в ненормальных условиях, что влечет за собой изменение его электрических характеристик, увеличение тока в обмотках. Поэтому необходимо взять тестер и проверить напряжение в сети, наличие фаз, равномерность напряжения тока на каждой из них. Определенные расхождения могут быть, но если их величина большая, то нужно искать и устранять причину.

В любом случае если было замечено, что температура электродвигателя повышена, а она должна быть меньше 125 градусов по Цельсию, то необходимо выяснять причины. Нужно посмотреть может, увеличилась механическая нагрузка на вале двигателя.

Может, происходит затирание подшипников внутри электромотора. А может двигатель без смазки и работает на сухую. Проверить, не замкнули ли провода в обмотке. Возможно, произошел перекос фаз или напряжение не соответствует норме.

Позволяют ли мощности двигателя работать в этом устройстве. В любом случае если имеет место перегрев мотора, то должна присутствовать одна из вышеперечисленных причин. При этом важно ее своевременно установить и побыстрее устранить, не подвергая двигатель повышенным нагрузкам продолжительный период времени.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

  • при напряжении 500 Вольт I=4,5Р;
  • при напряжении 380 Вольт I=6Р;
  • при напряжении 220 Вольт I=10,5Р.

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Подводим итоги

В современных автомобилях проблема проводки встречается довольно часто. Это неполадка, которая на самом деле может стать причиной значительных неприятностей. Нужно отдавать себе отчет в том, что отправляться в далекое путешествие на машине с проблемами в электросети не следует. Также не стоит продолжать эксплуатацию машины, когда были обнаружены такие проблемы. И если в одном авто речь идет о простой особенности генератора, то в другом случае важно будет учитывать все технические аспекты работы электропроводки, каждого потребителя и других факторов. Разобраться с этими проблемами могут только специалисты.

Стоимость ремонта электрической сети на хорошей станции технического обслуживания будет зависеть от причин поломки. Иногда специалистам достаточно заменить вышедшее из строя реле, чтобы исправить ситуацию. В ином случае приходится ремонтировать генератор, менять или удалять из системы определенные потребители электрического тока. Поэтому окончательные расходы зависят от определенных в ходе диагностики неполадок. Важно помнить, что любые проблемы стоит устранять достаточно быстро, иначе могут возникнуть неполадки с жизненно важными органами вашего автомобиля. А вы когда-нибудь сталкивались с такими проблемами?

Стабилизаторы напряжения SKAT для кондиционеров и сплитов

Инженеры компании БАСТИОН разработали линейку надёжных стабилизаторов сетевого напряжения для питания бытовых электроприборов под торговой маркой SKAT. Для питания кондиционеров и сплит-систем БАСТИОН рекомендует надёжные релейные стабилизаторы для кондиционеров и сплит-систем SKAT ST SPLIT-9 и SKAT ST SPLIT-9 исп.5.

Стабилизатор напряжения SKAT ST SPLIT-9

Стабилизатор сетевого напряжения SKAT ST SPLIT-9 разработан для работы с кондиционерами бытового применения (сплит-системами) с энергоэффективностью 7000, 9000 BTU. Номинальная мощность нагрузки 1100 ВА. Диапазон входного сетевого напряжения 145. 260 В. Стабилизатор обеспечивает качественную защиту климатического оборудования. Может быть установлен на объектах различного назначения: коттеджах, квартирах, офисах, промышленных предприятиях, учреждениях и т. д.).

Стабилизатор напряжения уличного исполнения SKAT ST SPLIT-9 исп.5

Стабилизатор сетевого напряжения уличного напряжения SKAT ST SPLIT-9 исп.5 разработан для работы с кондиционерами бытового применения (сплит-системами) с энергоэффективностью 7000, 9000 BTU. Номинальная мощность нагрузки 1100 ВА. Диапазон входного сетевого напряжения 145-260 В. Класс защиты IP56. Стабилизатор обеспечивает качественную защиту климатического оборудования. Может быть установлен на объектах различного назначения: коттеджах, квартирах, офисах, промышленных предприятиях, учреждениях и т. д.

Стабилизаторы напряжения SKAT ST SPLIT-9 и SKAT ST SPLIT-9 исп.5 имеют высокую надёжность, могут работать круглосуточно. Заводской срок гарантии — 5 лет!

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector