Promlebedka.ru

Авто ДРайв
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что приводит в движение самолеты с поршневым двигателем

Движение в небо. 105 лет филиалу АО ОДК-ОМО им. П.И. Баранова

КАТЕГОРИИ

  • Новости Союза
  • Анонсы
  • Работа в регионах
  • Донорство крови
  • Новости предприятий
  • Социальное партнерство
  • Мнения
  • СМИ о нас

ПОПУЛЯРНОЕ

22 сентября 2021 года под председа.

Мероприятие состоялось 23 сентября.

24 сентября 2021 года во Дворце ку.

23 сентября 2021 года в Воронежско.

Председатель Государственной Думы .

  • бюро
  • Деятельность бюро ЦС
  • Донорство крови
  • Инженеры будущего
  • Комитеты и комиссии
  • Конференции
  • Неделя без турникетов
  • Новости предприятий
  • Работа в регионах
  • социальное партнерство
  • СПК
  • Съезды

Старейшему предприятию России по производству авиационных двигателей филиалу АО ОДК-ОМО им. П.И. Баранова (входит в Союз машиностроителей России) исполнилось 105 лет.

С учетом эпидемиологической ситуации торжественные мероприятия проходили в течение 3 дней. О славной истории предприятия был выпущен фильм с названием «Движение в небо». Десятки поздравлений пришли на завод со всех уголков России. Прозвучали поздравления от руководства ГК «Ростех» и Союза машиностроителей России. В торжественных мероприятиях приняли участие Губернатор Омской области Александр Бурков, министр промышленности, связи, цифрового и научно-технического развития Омской области Андрей Посаженников, руководители АО ОДК.

— У коллектива завода хорошие перспективы, — отметил Алексей Толпегин, директор филиала АО ОДК-ОМО им. П.И. Баранова, председатель РО СоюзМашРоссии. — Производственная программа сформирована на длительный период, имеется задел и по новым изделиям.

Поздравляя коллектив с юбилеем, Губернатор Омской области Александр Бурков выразил уверенность, что завод и дальше будет успешно справляться с поставленными задачами, крепить обороноспособность страны, прославлять омскую землю. – Завод вошел в 10 крупнейших налогоплательщиков региона, здесь работают тысячи уникальных специалистов, — отметил он в своем выступлении.

Омское моторостроительное объединение им. П.И. Баранова имеет славную историю. Завод был создан в 1916 году в Запорожье, и выпускал первые российские авиационные двигатели. В 1941 году был эвакуирован в город Омск, уже 7 ноября 1941 г. был испытан первый двигатель М-88Б, собранный на новом месте, а через два месяца этот двигатель был собран уже полностью из омских деталей, завод заработал в полную силу. Производились двигатели М-88Б для дальних бомбардировщиков Ил-4. В 1943 г. освоен выпуск двигателя АШ-82ФН – на истребители Ла-5ФН и Ла-7, бомбардировщики Ту-2 и Пе-8.

За образцовое выполнение заданий по серийному производству моторов завод был награжден в 1944 г. орденом Трудового Красного Знамени, а в 1945 г. – орденом Ленина.

В послевоенный период выпускаются двигатели АШ-82Т для Ил-14, АШ-82В для вертолета Ми-4. В 1958-1975 гг. завод участвует в производстве жидкостных ракетных двигателей. В 1963 г. освоено производство ГТД-3Ф, ГТД-3М с редуктором РВ-3М для вертолета Ка-25. С 1967 г. начинается освоение и выпуск реактивных двигателей АЛ-21Ф-3 для Су-17, Су-24. В 1971 г. за успешное выполнение заданий восьмой пятилетки коллектив завода награжден орденом Октябрьской Революции.

В 1978 г. началось освоение вспомогательной силовой установки ВСУ-10 для самолетов Ил-86, Ил-96-300, в 1982 г. – освоение блоков слежения и приводов для универсальных подвесных агрегатов заправки (УПАЗ). В 1983 г. осваивается и налаживается серийное производство реактивного двигателя РД-33 для самолетов МиГ-29. 1989 г. – освоение производства двигателя ТВ7-117С для самолета Ил-114. В 1993 г. начинается освоение турбовинтового двигателя ТВД-20 для Ан-3 и Ан-38 (с 2000 г. производство двигателя сертифицировано). С 2002 г. выпускаются узлы АИ-222-25 для самолета Як-130.

Всего за годы работы освоен выпуск 25 типов поршневых, газотурбинных и реактивных двигателей.

Сегодня филиал АО «ОДК» «ОМО им. П.И. Баранова» является одним из крупнейших заводов по производству авиационных двигателей и комплектующих к ним в России, ведет свою деятельность в тесной кооперации с другими предприятиями АО «ОДК», участвует в крупных отраслевых проектах отечественного авиадвигателестроения. Среди приоритетных продуктовых программ – выпуск деталей и сборочных единиц для двигателей АИ-222-25, ВК-2500, Д-18Т, ТВ7-117СТ и других.

Производственно-технологический комплекс завода позволяет осуществлять полный цикл выпуска авиадвигателей, начиная от заготовительных процессов до испытаний готовых изделий. Также специалисты предприятия выполняют гарантийное и послегарантийное техническое обслуживание двигателей.

Поздравляем коллектив филиала АО ОДК-ОМО им. П.И. Баранова с юбилеем!

Авиационные двигатели

Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.

По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.

Двигатели первой группы называются воздушными, или атмосферными. А вторая группа получила название ракетных. Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.

Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.

Двухконтурный турбореактивный двигатель

ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.

Не очень понятная картина выходит, да? Давайте разберемся как оно работает.


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.

Читать еще:  Бензиновый двигатель работает на холодную как дизель

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

В переводе со шведского — «летать стыдно». Общественное движение, выраженное в отказе от авиаперелётов с целью сокращения выбросов СО 2 в окружающую среду. Появление термина на шведском языке неудивительно: это движение зародилось в Швеции в 2017 году благодаря певцу Стаффану Линдбергу. Он опубликовал статью, в которой вместе с 5 друзьями пообещал навсегда отказаться от перелетов из-за выбросов СО2. Среди людей, подписавших статью, — известная экологическая активистка Грета Тунберг, немало поспособствовавшая популяризации движения: она приплыла в Нью-Йорк на яхте через Атлантический океан для участия в саммите ООН по климату. Там Грета выступила с речью, которая принесла ей всемирную известность.

В переводе со шведского — «летать стыдно». Общественное движение, выраженное в отказе от авиаперелётов с целью сокращения выбросов СО2 в окружающую среду. Появление термина на шведском языке неудивительно: это движение зародилось в Швеции в 2017 году благодаря певцу Стаффану Линдбергу. Он опубликовал статью, в которой вместе с 5 друзьями пообещал навсегда отказаться от перелетов из-за выбросов СО2. Среди людей, подписавших статью, — известная экологическая активистка Грета Тунберг, немало поспособствовавшая популяризации движения: она приплыла в Нью-Йорк на яхте через Атлантический океан для участия в саммите ООН по климату. Там Грета выступила с речью, которая принесла ей всемирную известность.

Наиболее перспективными для авиации, если акцентировать внимание на уменьшении углеродного следа и эмиссии вредных веществ в атмосферу, считается применение электрических и гибридных силовых установок (ГСУ). «Силовые установки такого типа обеспечат ощутимое снижение воздействия на окружающую среду или сведут его к нулю — в случае с электрическими», — пояснили в «ОДК-Климов».

Что такое гибридная силовая установка? Это комбинация поршневого или газотурбинного двигателя с электрическим и аккумуляторными батареями. В частности, «ОДК-Климов» (входит в Объединенную двигателестроительную корпорацию Госкорпорации Ростех) планирует создать гибридную силовую установку на основе газотурбинного привода и электромотора.

Использование электроэнергии дает возможность сократить выбросы, уровень шума и потребления топлива — например, на «рулежке» в аэропорту можно использовать чисто электрическую тягу, тогда на земле не будет никаких выбросов.

Но есть одна проблема — вес батарей. Бак с керосином и газотурбинный двигатель легче электрической силовой установки, а в авиации каждый дополнительный килограмм имеет значение. Поэтому сегодня уровень развития технологий позволяет использовать электрические двигатели и гибридные силовые установки только на небольших сверхлегких самолетах — например, Cessna 337. Это не мешает, к примеру, Норвегии строить планы полностью перевести внутренние авиаперевозки пассажиров на электрические самолеты к 2040 году. Впрочем, Норвегия не такая большая страна.

Сейчас же перед российскими разработчиками стоит задача разработать ГСУ для легкой авиации, которая может использоваться на местных авиалиниях с дальностью полетов около 250 км, а также для решения военных задач. Этим и планирует заняться конструкторский коллектив «ОДК-Климов».

Воздействие авиации на окружающую среду не ограничивается только полетами. Например, неотъемлемой частью производства двигателей являются их испытания (отсюда — шум и выхлопы) и хранение топлива.

Чтобы уменьшить вред для города, предприятие еще в 2014 г. переехало из центра Петербурга, создав, по сути, новое современное производство. Это позволило внимательнее подойти к решению проблемы охраны окружающей среды. Так, у испытательных стендов есть шахты шумоглушения, построены современные очистные сооружения, в 2021 году начнется сооружение нового топливного терминала.

В наступающем году предприятие сделает важный шаг для решения проблемы безответственного отношения к окружающей среде, которая берет начало в 50-х годах прошлого века. В районе Шуваловского карьера начнутся инженерно-изыскательские работы, по итогам которых будут приняты решения, как устранить массив нефтеводной смеси, скопившейся в грунтах. Для выхода из непростой ситуации потребуются огромные усилия, но предприятие готово их вкладывать, чтобы тяжелое «нефтеводное» наследие прошлого не досталось новым поколениям.

Альтернатива на ближайший период

Итак, можно сделать вывод, что на сегодняшний день при современных устройствах хранения энергии ни электрические авиалайнеры на акумуляторах ни гибридные электрические авиалайнеры для коммерческого использования применять не придется. Этот тезис остается как минимум до тех пор, пока сертифицируемые аккумуляторные системы не повысят плотность своей энергии. Для ближнемагистральных самолетов – эта задача будет решена в ближайшие годы.

В течение ближайшего 30-летнего периода та же ситуация применима к технологиям, связанным со сверхпроводящими двигателями и генераторами, топливными элементами и криогенным топливом. Конфигурации самолетов с полностью электрическим аккумулятором вероятно всего будут ограничены небольшими самолетами (авиация общего назначения и пригородных самолетов), которые не являются значительным источником выбросов CO2 по сравнению с более крупными коммерческими самолетами. Для больших коммерческих самолетов вполне вероятно, что применение топливных элементов будет ограничено вторичными системами, такими как вспомогательные силовые установки и стартовые системы. Значительные улучшения в удельной мощности батарей и топливных элементов должны быть достигнуты, прежде чем эти источники энергии будут рассмотрены для больших самолетов. Кроме того, чистое сокращение CO2, выбросов от использования полностью электрических систем или систем с топливными элементами значительно минимизируются, если электрическая энергия, используемая для зарядки батарей или производства водорода, используемого для питания топливных элементов, будет генерируется с использованием возобновляемых источников или технологий с низким уровнем выбросов углерода.

Читать еще:  Чип тюнинг дизельных двигателей тойота ленд крузер 200

Что приводит в движение самолеты с поршневым двигателем

Авторизация

Поиск

— Публикации — Наука — Научные проблемы кораблестроения и их решение — ВМС США разрабатывают летающую подлодку

ВМС США разрабатывают летающую подлодку

В октябре 2008 года агентство DARPA заявило о намерении разработать удивительный самолет-невидимку, который бы подлетал к цели – скажем, вражескому кораблю или порту – затем, превратившись в подлодку, погружался в воду, подходил на расстояние удара и атаковал врага – и все это незаметно для последнего.

Специалисты DARPA со своим 3-х-миллиардным ежегодным бюджетом вообще славятся тем, что ставят перед собой умопомрачительные инженерные задачи, но этот проект выглядит совершенной фантастикой. Возможно ли такое в действительности? «Несколько лет назад я бы сказал, что летающая подлодка — глупость. Теперь я так не считаю», — говорит инженер-конструктор подводных лодок из Сан-Франциско Грэхем Хоукс, команда которого разработала один из проектов для DARPA.

Агентство уже начало изучать предложения конструкторов. Не исключено, что в следующем году DARPA приступит к финансированию понравившейся разработки. Сотрудники DARPA отказываются от комментариев, но журнал New Scientist пообщался с проектировщиками и выяснил, как они намерены преодолеть те сложности, которые мешают превратить самолет в подводную лодку.

А сложности есть. Самолет должен весить как можно меньше, чтобы на его поднятие в воздух хватало меньшей мощности двигателя. Подлодки же – тяжеловесы с массивными корпусами, выдерживающими огромное давление воды. Самолет взлетает и опускается благодаря крыльям, подлодки всплывают и погружаются, как воздушные шары, изменяя свою массу и соответственно плавучесть. Как инженеры устранят эти противоречия? Сможет ли самолет нырнуть в море, как птица? И годится ли для такого самолета реактивный двигатель?

По словам бывшего советника по вопросам военно-морской стратегии и технологии правительства США Нормана Полмара, разрабатывать необходимо самолет, который может погружаться под воду. «Подводные лодки не смогут летать, гидроплан же уйти под воду — сможет», — считает он. Именно так думал в первой половине ХХ века Борис Ушаков — автор идеи летающей ПЛ. В 1934 году курсант Ленинградского военно-морского инженерного училища создал «схематический проект летающей подводной лодки (ЛПЛ)» — боевого гидросамолета с тремя авиамоторами. Этот самолет должен был подлетать к кораблю, приводняться, погружаться благодаря заполнению кабины водой, и торпедировать цель. В 1937 году проект был даже включен в план отдела «В» Научно-исследовательского военного комитета, но впоследствии от радикальной идеи отказались.

Первая летающая подлодка появилась только через 30 лет. В 1962 году инженер-электронщик авиазавода North American Aviation Дональд Рейд представил миру гидросамолет Reid Flying Submarine (RFS-1), собранный им в свободное от работы время из деталей от списанной авиационной техники. На испытаниях самолет доказал, что может погружаться под воду на несколько метров, а вот взлететь на сколь-либо продолжительное время у него не вышло: слишком велика была масса. Изобретение появилось в разгар холодной войны, и ВМС США даже финансировали дальнейшие разработки инженера – впрочем, недолго, в 1966 году Конгресс США закрыл программу.

Заинтересовались они аппаратом конструкторского бюро Convair, получившим название «субплан». Субплан при приводнении полагался не на поплавки, которых был лишен, а на обтекаемость фюзеляжа, напоминавшего корпус подводной лодки. В журнале докладов Военно-морского института за сентябрь 1964 года инженер гидродинамики из Управления вооружения ВМС Юджин Хэндлер заявляет, что такая летающая ПЛ идеально подходит для нападения на советские корабли в Балтийском, Черном и Каспийском морях. Бюро Convair разработало детальные эскизы субплана и даже создало несколько макетов, которые были испытаны в резервуарах с водой. Впрочем, несмотря на то, что результаты испытаний выглядели многообещающими, в 1966 году Конгресс свернул финансирование проекта.

Может быть, и новый проект DARPA ожидает та же участь? «То, чего хотят американцы, звучит в высшей степени амбициозно, — считает начальник спасательной службы подводных лодок НАТО коммандер Королевского флота Великобритании Джонти Поуис. – Если они добьются хотя бы половины того, чего хотят от этой машины, это уже будет хорошо». Другие эксперты настроены более оптимистично, особенно в свете достижений инженерии и материаловедения последних лет (например, создания сверхлегких углеродных композитов и мощных энергоносителей). «Нет никаких причин, почему этот самолет не может быть создан», — уверен Хоукс.

Считается, что идея, предложенная бюро Convair, верна. Использование обтекаемого фюзеляжа вместо громоздких и тяжелых поплавков делает самолет легче и быстрее и в воздухе, и под водой. Но, положим, самолет приводнился. Как заставить его уйти под воду?

Один из вариантов – затопить фюзеляж. Но тогда экипажу понадобятся дыхательные аппараты. По словам Полмара, вместо этого можно поместить экипаж в водонепроницаемую кабину, а, чтобы компенсировать подъемную силу воздуха, одолжить еще одну идею Convair – затопляемые топливные баки. Если топливо в баках будет содержаться в резиновых емкостях, самолет погрузится благодаря воде, заполнившей пространство, которое освобождается между такими емкостями и стенками баков при сгорании топлива. Когда самолету предстоит всплывать, экипаж может просто откачать воду.

А как быть с двигателем? По словам инженера аэрокосмонавтики из британского университета Крэнфилда, для приведения в движение летающей ПЛ стоит полагаться на электроэнергию. «Когда лодка погружена, у батарей, питающих электромоторы, будет один плюс: их вес поможет преодолеть плавучесть корпуса».

Впрочем, такое решение вряд ли допустимо: лодка станет непригодной к полету. В своем прошлогоднем исследовании «Предварительный проект погружаемого тактического самолета» коллектив будущих инженеров из Университета Оберн в Алабаме рассчитал, что батареи, способные обеспечить дальность подводного плавания аппарата в 44 километра (требование DARPA), будут весить столько же, сколько все остальные его детали вместе взятые.

Какую альтернативу предложили студенты? На их взгляд, для движения под водой следует использовать стандартный авиационный газотурбинный двигатель, а воздух для него подавать через 10-метровую трубу-«шнорхель». В этом случае в погруженном состоянии самолет будет вынужден оставаться у самой поверхности. Впрочем, DARPA еще не определила, на какой глубине должен действовать перспективный аппарат, поэтому такой вариант вполне подходит. «Если самолет остается невидимым, нет особой необходимости погружаться глубоко, — считает инженер и директор Общества подводных технологий из Лондона. – Проблема в том, что самолет должен быть достаточно тяжелым, чтобы уйти под воду».

Читать еще:  Что будет если подушки двигателя просели ваз 2114

Для Хоукса здесь все очевидно. Он считает, что летающая подлодка не обязательно должна быть тяжелее любого другого самолета. «Невозможно построить самолет, который одновременно являлся бы и воздушным шаром, да и воздушный шар не сможет погрузиться под воду так, как это делает подлодка. Нельзя смешивать два фундаментально разных принципа работы».

Хоукс уже занимался строительством подводных лодок, которые легче воды. С их плавучестью он боролся с помощью крыльев. «Представьте, что лодка летит под водой, — предлагает инженер. – Это достижимо. Просто нужно упорно работать».

Чтобы крылья «летали» не только в воздухе, но и под водой, они должны отличаться от обычных. «В отличие от ассиметрично кривых крыльев, поднимающих в воздух обычный самолет, у крыльев летающей подлодки симметричный профиль», — говорит Хоукс. В воздухе такое крыло находится под положительным «углом атаки» по отношению к потоку: иначе говоря, «смотрит вверх». Сама летающая подлодка при этом тоже летит «носом вверх». Напротив, под водой угол атаки отрицательный, и лодка движется «носом вниз».

У Хоукса уже есть подводная лодка с маленькими крыльями Super Falcon, которая может «долететь» до 300-метровой глубины – то есть опуститься в 10 раз глубже, чем легкий водолаз. По словам Хоукса, если поставить на эту лодку авиадвигатели и крупные крылья, она будет летать со скоростью 900 километров в час при угле атаки 5 градусов. Под водой скорость такого аппарата составит 10 узлов. На этих скоростях число Рейнольдса примерно одно и то же – то есть несущие поверхности летающей подводной лодки будут исправно работать как в воздухе, так и под водой.

Хоукс признает, что на поднятие в воздух Super Falcon’а понадобится столько энергии, сколько сможет выработать только реактивный двигатель. Согласен с этим и Полмар. По его словам, использование поршневых двигателей, которые устанавливаются на легкие самолеты, исключено: если в цилиндры попадет вода, они откажут. «Поршневой двигатель нельзя заставить работать под водой», — говорит Полмар. Если же защитить реактивный двигатель от коррозии и расположить его в верхней части самолета, чтобы брызги не попадали в воздухозаборник во время взлета и посадки – он будет работать прекрасно. Кстати сказать, так устроен самолет-амфибия Бе-200 разработки и производства ТАНТК имени Г. М. Бериева.

По словам Хоукса, реактивные двигатели могут приводить в движение самолет не только в воздухе, но и под водой. Просто под водой компрессор и лопатки турбины двигателя будут работать благодаря электромотору. Создать двигатель, который в воздухе работает на керосине, а под водой – на электроэнергии, не так сложно.

Это понимает не только Хоукс. В прошлом году компания Airbus запатентовала электрореактивный двигатель, в котором в качестве источников энергии используются керосин и электричество. В большинстве реактивных двигателей есть электростартер, который может вращать вал турбины под водой, считает Хоукс. Лопасти при этом, конечно, будут крутиться медленнее, и двигатель будет менее эффективным, но инженер считает, что он все равно зарекомендует себя идеально.

Студенты Оберна в своей разработке применяют во многом похожую схему, только берут за основу турбовальный газотурбинный двигатель. По их мнению, при наличии винта с большими лопастями и редуктора для изменения скорости вращения вала такой двигатель покажет «приемлемую эффективность» как в воздухе, так и под водой. Для выработки электричества, вращающего винт под водой, могут применяться воздухонезависимые топливные элементы.

У реактивного двигателя Хоукса есть один недостаток. «Забортная вода не должна попасть на горячий двигатель – термоудар разнесет его на куски, — предупреждает инженер Управления гражданской авиации Великобритании Джим Маккенна, который раньше занимался проектированием погружаемых самолетов. – На охлаждение реактивного двигателя уходит очень много времени: турбина имеет температуру где-то между 500 и 600 градусами Цельсия». Словом, прежде чем погрузиться, летающей подлодке придется часами оставаться на поверхности воды, чтобы двигатели остыли.

Кстати, опустить подлодку Хоукса на глубину, достаточную для того, чтобы крылья создавали эффективную направленную вниз силу, тоже непросто. Но инженер предлагает решить проблему «птичьим» способом. «Можно уходить под воду носом вниз, буквально нырять», — считает Хоукс. Подобную идею высказывали еще пионер авиации 19 века Отто Лилиенталь и изобретатели первого в мире самолета братья Райт. Впрочем, она не гарантирует успех. Как бы там ни было, «будет то еще зрелище», — шутит Хоукс.

Подлодка-скат

Скаты семейства ромбовых плавают, ударяя по воде краями плавников. По мнению Виктора Крылова из британского Университета Лафборо, летающие подводные лодки могут делать то же самое. В этом случае приводить в движение лодку будут электромоторы или материалы с эффектом памяти формы на краях подвижных заостренных крыльев.

Испытания моделей с колеблющимися резиновыми килями показали, что идея себя оправдывает, хотя обычный пропеллер и эффективнее, говорит Крылов. По его словам, DARPA может заинтересовать то, что такой движитель работает гораздо тише пропеллера, благодаря чему летающую подлодку будет сложнее обнаружить.

Применение реверса в воздухе

Часть самолетов допускает возможность использования реверса тяги прямо в воздухе, но подобное включение зависит от типа самолета. В некоторых ситуациях реверс включается перед посадкой, а в иных – в момент снижения, что значительно понижает вертикальную скорость торможения или дает возможность избежать допустимого превышения скоростей во время пикирования, экстренного снижения или выполнения боевых маневров.

ATR 72 – турбовинтовой авиалайнер, яркий пример использования реверса в воздухе. Кроме того, воздушный реверс могут применять турбореактивный лайнер «Трайдент», сверхзвуковой авиалайнер «Конкорд», военно-транспортный самолет С-17А, истребитель Сааб 37 «Вигген», турбовинтовой «Пилатус РС-6» и прочие.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector