Promlebedka.ru

Авто ДРайв
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое коэффициент полезного действия двигателя внутреннего сгорания

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД ), с условным обозначением. Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

КПД двигателя – что это такое

КПД двигателя внутреннего сгорания означает значение соотношение двух величин: мощность, подающаяся в процессе функционирования мотора на коленчатый вал к мощности, которая получается поршнем посредством давления газов, образовавшихся при воспламенении топлива. Проще говоря, это преобразование тепловой или термической энергии, которая образуется при сгорании топливной смеси (бензин и воздух) в механическую.

На эффективность КПД двигателя влияют совокупность различных механических потерь, возникающих на разных стадиях функционирования, а также движение отдельных деталей двигателя, вызывающих трение. Эти детали вызывают наибольшие потери, составляющие примерно 70 % от их общего количества. К ним частям относятся поршни, поршневые кольца, подшипники. Помимо этого, потери возникают от функционирования таких механизмов, как магнето, насосы и пр., которые могут достигать до 20%. Наименьшую часть потерь составляют сопротивления, возникающие в процессе впуска/выпуска в топливной системе.

Мощность и крутящий момент

При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.

Аналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.

КПД бензинового и дизельного двигателя.

При этом стоит оговориться, что у бензиновых и дизельных машин КПД двигателя внутреннего сгорания различен: 20% против 40% (соответственно). Данный факт имеет место быть потому, что несмотря на то, что потери на обслуживание механики и нагрев планеты в бензиновых моторах и «дизелях» сопоставимы, количество сжигаемого в процессе горения топлива у дизельных двигателей выше.

Подводя итоги и вспомнив историю появления двигателя внутреннего сгорания, когда КПД составлял немногим более 5%, можно сказать, что инженеры шагнули далеко вперед, а учитывая факт того, что 100% КПД, а по сути идеального двигателя, им вряд ли удастся добиться, можно утверждать, что современные двигатели, скорее всего, достигли своего верха возможного КПД, поэтому неудивительно, что сегодня все чаще автомобилистам предлагаются машины с гибридными двигателями и электромобили, ведь КПД движка у них (электромобилей) – для справки – порядка 90%.

Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

Читать еще:  Устройство и принцип работы бензинового двигателя автомобиля

Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

КОГЕНЕРАЦИОННЫЕ ВОЗМОЖНОСТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ МИКРОТЭС НА БАЗЕ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ

  • Аннотация
  • Об авторах
  • Список литературы
  • Cited By

Аннотация

Рассмотрены возможности работы генераторов электрического тока на базе двигателей внутреннего сгорания с воздушным охлаждением в условиях когенерации, когда с отпуском электроэнергии обеспечивается отпуск теплоты в различных вариантах. Такие установки, как правило, выполняются на основе карбюраторных двигателей внутреннего сгорания (т. е. в качестве топлива используется бензин). Могут применяться в быту профессиональными строителями, геологами, военными и спасателями в зоне чрезвычайных ситуаций, на территориях с отсутствием инфраструктуры. В основе установки использован бензогенератор «Хитачи-2400» с воздушным охлаждением мощностью 2,4 кВт. Представлены основные методические положения для исследования микроТЭС на базе двигателей внутреннего сгорания с воздушным охлаждением, в основе которых лежат балансовые уравнения. При работе установки обеспечивается измерение всех температур и расходов рабочих сред для определения тепловых потоков в соответствии с предложенной методикой. Представлены технические характеристики теплообменных аппаратов для утилизации теплоты отработавших дымовых газов. Построены энергетические диаграммы, иллюстрирующие полезный эффект от применения различных теплообменных аппаратов. Когенерационные возможности установки обеспечиваются, во-первых, отпуском теплоты с охлаждающим цилиндр двигателя внутреннего сгорания воздухом, во-вторых, отпуском теплоты с горячей водой, нагретой за счет утилизации теплоты уходящих дымовых газов, и в-третьих, в расчетном варианте – отпуском теплоты с воздухом, последовательно нагретым за счет охлаждения головки цилиндра, а затем – за счет утилизации теплоты уходящих газов. Показано, что коэффициент использования теплоты топлива может быть увеличен с 0,22 до 0,50–0,60 в зависимости от принятого технического решения.

Ключевые слова

Об авторах

Адрес для переписки Щинников Павел Александрович – Новосибирский государственный технический университет, просп. К. Маркса, 20, 630073, г. Новосибирск. Тел.: +7 383 346-11-42 dekanat@power.nstu.ru

Список литературы

1. Судавный, А. С. Развитие когенерации в контексте концепции интеллектуального распределения / А. С. Судавный // Известия Тульского государственного университета. Технические науки. 2014. № 8. С. 117–120.

2. Интеграционные технологии при создании малых электротехнических систем и комплексов на основе методологии когенерации / Л. Н. Ахтулова [и др.] // Омский научный вестник. 2014. № 2 (130). С. 145–150.

3. Денисов-Винский, Н. Д. Мини-ТЭЦ как надежное средство решения проблемы энергообеспечения / Н. Д. Денисов-Винский // Энергобезопасность и энергосбережение. 2007. № 2. С. 10–18.

Читать еще:  Датчик температуры двигателя пандора не показывает температуру

4. Ерофеев, В. Л. Термодинамические пределы энергоэффективности теплоэнергетических установок / В. Л. Ерофеев, А. С. Пряхин // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. 2013. № 2. С. 33–38.

5. Современное состояние когенерации в России: обзор публикаций, перспективное направление исследований / А. В. Казаков [и др.] // Теплофизические основы энергетических технологий: сб. науч. трудов IV Всероссийской науч.-практ. конф. с междунар. участием. Томск: Томский политехн. ун-т, 2013. С. 321–329.

6. Тонкошкур, А. Г. Обоснование принципов тригенерации на основе комбинирования ГТУ с АБХМ / А. Г. Тонкошкур, Е. И. Муслимов // Проблемы теплоэнергетики: сб. науч. трудов по материалам XII междунар. науч.-техн. конф. Саратов: Саратовский гос. техн. ун-т, 2014. Вып. 3. С. 203–206.

7. Синельников, Д. С. Эффективность когенерационной теплоэнергетической установки на базе ДВС с воздушным охлаждением / Д. С. Синельников, П. А. Щинников // Теплоэнергетика и теплотехника: сб. науч. трудов. Новосибирск: Изд-во Новосибирского гос. техн. ун-та, 2015. Вып. 19. С. 159–167.

8. Щинников, П. А. Методика оценки технико-экономической эффективности когенерационных установок на базе ДВС с воздушным охлаждением / П. А. Щинников, В. Г. Томилов, Д. С. Синельников // Научный вестник Новосибирского государственного технического университета. 2015. № 2. С. 134–143.

9. Ноздренко, Г. В. Тепловая электростанция на базе ДВС: метод. указания / Г. В. Ноздренко, Ю. И. Шаров, И. В. Бородихин. Новосибирск: Изд-во Новосибирского гос. техн. ун-та, 2008. 39 с.

10. Григорьева, О. К. Расчет тепловых схем теплофикационных паротурбинных установок: метод. указания / О. К. Григорьева, О. В. Боруш. Новосибирск: Изд-во Новосибирского гос. техн. ун-та, 2014. 63 с.

11. Щинников, П. А. Энергоснабжение при малоэтажном строительстве при отсутствии инфраструктуры = Power Supply in the Low-Rise Construction in the Lack of Infrastructure / П. А. Щинников, Д. С. Синельников // Известия высших учебных заведений. Строительство. 2015. № 7. С. 58–64.

Для цитирования:

Щинников П.А., Синельников Д.С. КОГЕНЕРАЦИОННЫЕ ВОЗМОЖНОСТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ МИКРОТЭС НА БАЗЕ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2017;60(1):67-76. https://doi.org/10.21122/1029-7448-2017-60-1-67-76

For citation:

Shchinnikov P.A., Sinelnikov D.S. COGENERATION OPPORTUNITIES TO IMPROVE THE EFFICIENCY OF MICRO HEAT POWER PLANTS BASED ON AIR COOLED INTERNAL COMBUSTION ENGINES. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2017;60(1):67-76. (In Russ.) https://doi.org/10.21122/1029-7448-2017-60-1-67-76


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Механический КПД — Теория ДВС — Каталог статей

Индикаторная мощность, развиваемая тепловым двигателем, не может быть в полной мере реализована из-за потерь на преодоление трения и на привод вспомогательных механизмов, но, чтобы улучшить топливную экономичность двигателя, необходимо точно знать все эти потери. Для удобства их оценки введено понятие механического КПД ηm.

Механический КПДОтношение эффективной мощности двигателя к индикаторной.

Наиболее значительная часть потерь вызвана трением в цилиндре, меньшая – трением в хорошо смазываемых подшипниках и приводом необходимого для работы двигателя оборудования. Потери, связанные с поступлением воздуха в двигатель (насосные потери), весьма важны, так как они возрастают пропорционально квадрату частоты вращения двигателя.

Потери мощности, необходимые для привода оборудования, обеспечивающего работу двигателя, включают мощность на привод механизма газораспределения, масляного, водяного и топливного насосов, вентилятора системы охлаждения. При воздушном охлаждении вентилятор подачи воздуха является неотъемлемым элементом двигателя при его испытаниях на стенде, в то время как у двигателей жидкостного охлаждения при проведении испытаний вентилятор и радиатор часто отсутствуют, а для охлаждения используют воду из внешнего контура охлаждения. Если потребляемую мощность вентилятора двигателя жидкостного охлаждения не учитывать, то это дает заметное завышение его экономических и мощностных показателей по сравнению с двигателем воздушного охлаждения.

Читать еще:  Фольксваген поло седан что за двигатель установлен

Другие потери на привод оборудования связаны с генератором, пневмокомпрессором, гидронасосами, необходимыми для освещения, обеспечения работы приборов, тормозной системы, рулевого управления автомобиля. При испытании двигателя на тормозном стенде следует точно определить, что считать дополнительным оборудованием и как его нагружать, поскольку это необходимо для объективного сопоставления характеристик разных двигателей. В частности, это относится к системе охлаждения масла, которое при движении автомобиля охлаждается обдувом масляного поддона воздухом, отсутствующим при испытаниях на тормозном стенде. При испытании на стенде двигателя без вентилятора не воспроизводятся условия обдува трубопроводов воздухом, что вызывает повышение температур во впускной трубе и ведет к уменьшению величины коэффициента наполнения и мощности двигателя.

Размещение воздушного фильтра и величина сопротивления выпускного трубопровода должны соответствовать реальным условиям работы двигателя в автомобиле. Эти важные особенности необходимо учитывать при сопоставлении характеристик различных двигателей или одного двигателя, предназначенного для применения в различных условиях, например, в легковом или грузовом автомобиле, тракторе или для привода стационарного генератора, компрессора и т. д.

При уменьшении нагрузки двигателя его механический КПД ухудшается, так как абсолютная величина большинства потерь не зависит от нагрузки. Наглядным примером служит работа двигателя без нагрузки, т. е. на холостом ходу, когда механический КПД равен нулю и вся индикаторная мощность двигателя расходуется на преодоление его потерь. При нагрузке двигателя на 50% или менее удельный расход топлива по сравнению с полной нагрузкой значительно возрастает, и поэтому использовать для привода двигатель, имеющий большую, чем это требуется, мощность, совершенно неэкономично.

Механический КПД двигателя зависит от типа используемого масла. Применение в зимнее время масел повышенной вязкости приводит к росту расхода топлива. Мощность двигателя при больших высотах над уровнем моря падает вследствие уменьшения давления атмосферы, однако его потери практически не меняются, вследствие чего удельный расход топлива возрастает аналогично тому, как это имеет место при частичной нагрузке двигателя.

Стоит заметить, что высокий механический КПД не является гарантией высокогоэффективного КПД двигателя.

Повышение КПД двигателя

Топливная эффективность и КПД современных двигателей находятся на своём максимальном уровне, поскольку все усовершенствования, которые только могли иметь место в автомобильной инженерии, уже произошли. Тем не менее, производители стремятся повышать коэффициент полезного действия, но результат, который они получают, никак не сопоставим с огромными ресурсами, усилиями и временем, которое тратят для достижения цели. Итогом является увеличение КПД лишь на 2 — 3 %.

Частично именно эта ситуация стала причиной появления полноценной индустрии так называемого тюнинга двигателя в любой крупной стране. Речь идёт о многочисленных полукустарных мастерских, мелких фирмах и отдельных мастерах, которые доводят традиционные моторы массовых брендов для более высоких показателей, как в плане тяги, так и мощности или КПД. Это может быть форсирование, доработка, доводка и другие ухищрения, определяемые, как тюнинг.

Например, используемый впервые в 20-х годах турбонаддув воздуха, который поступает в двигатель, применяется и сейчас. Такое устройство было запатентовано ещё в 1905 году швейцарским инженером Альфредом Бюхи. В начале Второй мировой войны наблюдалось массовое внедрение систем прямого впрыска топлива в цилиндры поршневых моторов военной авиации. Следовательно, те передовые технические ухищрения, которые мы считаем современными, известны уже более 100 лет.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector