Promlebedka.ru

Авто ДРайв
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое кпд двигателя и как его узнать

Теперь немного о том, что же представляет собой КПД, и от чего зависит. По классическому определению это соотношение выполненной работы и затраченной для этого энергии. Определяется в процентном соотношении. Чем выше процент коэффициента полезных действий, тем эффективнее работает двигатель. Правда, даже современные автомобили не могут похвастаться достаточно высокими показателями КПД.

Сегодня считается нормальным, если уровень полезной работы ДВС машины находится в пределах 20 – 60%. Для сравнения – использование электрических двигателей дает возможность получать КПД на уровне 95%. Потеря эффективности возникает от различных внутренних и внешних факторов, воздействующих на двигатель,когда он эксплуатируется.

В частности к таким можно отнести потерю энергию через «вымывание» тепла, неэффективно подготовленная воздушная смесь, что в дальнейшем становится причиной ее неполного сгорания, затраты энергии на преодоление трения, потеря тепла в процессе отвода сгоревших газов. Суммарно такие потери могут достигать до 60 – 80% от изначально получаемой энергии.

Конечно, такой подход приводит к нецелевому использованию топлива, низкой мощности, быстрому изнашиванию деталей отдельного типа, необходимости выполнения более частых профилактических осмотров и ремонтов. Здесь важным моментом является необходимость использования качественных деталей. Ведь в процессе работы двигателя все его части постоянно находятся в повышенном напряжении. И малейший изъян одной из его частей может стать причиной выхода из строя всего агрегата.

Функция автоматической оптимизации энергопотребления Automatic Energy Optimization

Экономия энергии и точное управление системами являются основными причинами применения преобразователей частоты в системах отопления, вентиляции и кондиционирования воздуха HVAC (Отопление, Вентиляция и Кондиционирование). Экономия энергии важна, так как небольшое уменьшение оборотов вентилятора или центробежного насоса имеет очень большое влияние на потребление им энергии.

КПД вентиляторов или насосов вместе с преобразователем частоты остается высоким на пониженных оборотах. КПД двигателя, однако, падает, поскольку двигатель становится недозагруженным. Изготовители преобразователей частоты предприняли попытки улучшить КПД двигателей на малых оборотах, используя ряд конструктивных решений. К сожалению, большинство из этих решений требует кропотливой ручной регулировки и все еще не может оптимизировать КПД двигателя во всех условиях.

Преобразователь частоты VLT HVAC Drive имеет уникальную функцию управления, называемую автоматической оптимизацией энергопотребления AEO (Automatic Energy Optimization). Благодаря этой функции преобразователь частоты автоматически увеличивает КПД двигателя до максимума в любых условиях работы.

Ниже рассматривается причина уменьшенного КПД двигателя при малых нагрузках и способ, которым функция AEO противодействует этой естественной тенденции. Рассматриваются также применение и ограничения данной функции.

Работа двигателя

В асинхронных электродвигателях переменного тока крутящий момент на валу двигателя создается магнитным полем внутри двигателя. Напряженность этого магнитного поля и возникающий в результате крутящий момент меняются вместе с требованием по нагрузке на двигателе. Более высокая нагрузка требует более высокого крутящего момента, что означает, что двигатель потребляет больше тока из линии питания. Хотя обороты двигателя остаются относительно постоянными, потребляемый ток может меняться существенно.

Если полный крутящий момент двигателя не требуется, то не требуется и полное магнитное поле. Ток, который создает чрезмерное магнитное поле, не дает положительного эффекта и генерирует реактивный ток, который тратит энергию и создает тепловое напряжение. Избыточный ток даже более очевиден на малом крутящем моменте, когда реактивный ток растет по сравнению с действительной составляющей тока. Это основная причина, почему малонагруженные двигатели демонстрируют низкий КПД, что и будет обсуждаться ниже более подробно.

Чтобы ограничить ток через двигатель, ограничивается подаваемое на двигатель напряжение. Хотя это и кажется простым, в действительности это не так. Слишком уменьшенное напряжение приводит к чрезмерному скольжению ротора двигателя, которое в свою очередь приводит к большому потреблению тока. Тепло, создаваемое этим током, может серьезно повредить двигатель. Поскольку слишком сильное неконтролируемое снижение напряжения может повредить двигатель, большинство изготовителей преобразователей частоты избегают уменьшения напряжения двигателя до оптимального уровня.

Зависимость напряжения от частоты

Для двигателей с нагрузками с постоянным крутящим моментом ток намагничивания двигателя должен оставаться постоянным во всем диапазоне управляемых преобразователем частоты оборотов. Поскольку индуктивное сопротивление (XL) обмоток статора двигателя пропорционально прилагаемой частоте, (XL = 2πfL), для поддержания постоянного тока двигателя требуется прямая зависимость между прилагаемым напряжением и частотой. Это прямая зависимость «напряжения от частоты» (U/F), является одним из способов управления двигателем при помощи преобразователя частоты.

Это относится к преобразователям частоты, которые рассчитаны на нагрузки при постоянном крутящем моменте, такие как конвейеры, лебедки и подобные промышленные установки. Постоянное значение В/Гц показано на Рисунке 1.

Когда преобразователь частоты с постоянной характеристикой U/f применяется при нагрузке с переменным крутящим моментом, полный ток намагничивания на малых оборотах больше, чем требуется самой нагрузкой. Это перенамагничивание, как было упомянуто, создает в двигателе избыточное тепло.

Решение заключается в определении, какое напряжение требуется двигателю для правильной работы. Поскольку для этого требуются специальные функции, некоторые изготовители преобразователей частоты просто игнорируют этот вопрос и их преобразователи частоты производят только постоянную характеристику U/f во всем диапазоне оборотов. Хотя такой подход не максимизирует КПД двигателя, он позволяет избежать перенамагничивания двигателя и образования чрезмерного скольжения ротора двигателя.

Читать еще:  Вибрация двигателя на холостых оборотах ваз 21099 карбюратор

Поскольку нагрузки, требующие переменного крутящего момента, представляют собой совершенно другое, модель фиксированной характеристики U/f не будет работать для всех нагрузок. Когда производится попытка улучшить КПД двигателя, реальная настройка профиля U/f часто предоставляется конечному пользователю. При этом методе (представленном на Рисунке 2) от пользователя требуется определить промежуточную точку U/f в профиле преобразователя частоты. Для этого требуется большое количество экспериментов и оценок во всем диапазоне оборотов и нагрузки системы. Кроме того, если характеристики системы меняются, требуется повторить весь этот процесс настройки. Очевидно, что это не самое практичное решение.

Некоторые изготовители преобразователей частоты предлагают пользователю выбор из ряда предварительно заданных переменных профилей U/f. Хотя это и упрощает процедуру, все еще требуется вручную прогнать двигатель через весь диапазон оборотов и определить самый низкий профиль В/Гц, который будет воспринимать нагрузку без чрезмерного скольжения ротора двигателя или нагрева двигателя.

Характеристики нагрузки установки могут измениться из-за сезонных изменений или модернизации системы HVAC здания. В этом случае повторно должен быть осуществлен процесс ручной настройки. Из-за необходимости такой работы большинство пользователей просто выбирают высокий профиль U/f, зная, что это позволит справляться с нагрузкой. Это приводит к растрате дорогой энергии.

Функция автоматической оптимизации потребления энергии «Automatic Energy Optimization»

Лучшим решением для настройки напряжения в соответствии с кривой частоты/мощности стала бы ее автоматизация. Это именно то, что делает преобразователь частоты VLT HVAC Drive. Он использует уникальный процесс автоматической оптимизации энергопотребления «Automatic Energy Optimization», который без вмешательства пользователя автоматически гарантирует, что соотношение напряжения и частоты всегда оптимально для конкретной нагрузки двигателя.

Чтобы автоматически обеспечить правильное напряжение при любой рабочей частоте и нагрузке, преобразователь частоты непрерывно контролирует двигатель и реагирует на изменения. Уникальный процесс управленияVVC+ преобразователя частоты VLT HVAC Drive является основной частью. Ток контролируется таким образом, чтобы в любой момент можно было узнать показатели как активного тока (который меняется от нагрузки), так и реактивного тока (который намагничивает статор двигателя).

В результате, преобразователь частоты автоматически поддерживает максимальный КПД двигателя во всех условиях. Во время начального разгона подается до 110% выходного напряжения, чтобы обеспечить дополнительный крутящий момент на преодоление инерции нагрузки. Это также обеспечивает мягкий старт и плавное наращивание характеристик регулируемых преобразователей частоты, предназначенных для использования в системах HVAC. После того, как двигатель набирает заданные обороты, преобразователь частоты VLT HVAC Drive автоматически определяет уровень постоянной нагрузки и уменьшает выходное напряжение для максимизации КПД двигателя. Если нагрузка меняется, например, когда резко открывается клапан в системе накачки, частотный преобразователь определяет изменение нагрузки и немедленно увеличивает выходное напряжение, чтобы поддерживать управление двигателем.

Кроме того, функция Автоматической адаптации двигателя «Automatic Motor Adaptation (AMA)» преобразователя частоты VLT HVAC, которая точно определяет критические параметры двигателя, позволяет частотному преобразователю рассчитывать показатели тока, чтобы определить количество тока намагничивания, необходимого для конкретной нагрузки. В результате получаются исключительные характеристики двигателя при низкой нагрузке, в области, в которой большинство преобразователей частоты практически неэффективны. Преобразователь частотыVLT HVAC Drive может реально понизить реактивную часть тока двигателя. Этот компонент, часто составляющий 25% тока двигателя и больше при малой нагрузке, обычно игнорируется другими изготовителями преобразователей частоты.

Функция автоматической оптимизации энергопотребления «Automatic energy optimization (AEO)» позволяет преобразователю частоты VLT HVAC Drive управлять напряжением в широком диапазоне, чтобы настраивать выход частотного преобразователя на конкретную нагрузку. Диапазон напряжений, в котором работает функция AEO, представлен на Рисунке 3. Как видно, функция AEO позволяет преобразователю частоты в целях экономии энергии уменьшать напряжение на двигателе практически на 50%. Переменная характеристика U/f экономит еще 5% энергии в типовых установках HVAC.

Преимущества функции AEO

Основное преимущество применения функции автоматической оптимизации энергопотребления проявляется при нагрузках при переменном крутящем моменте. Поскольку обороты двигателя падают, нагрузка на двигатель существенно снижается. Если на двигатель подается постоянно соотношение U/f, это отрицательно влияет на КПД двигателя. Определить, насколько можно снизить напряжение на двигателе до того, как начнут снижаться характеристики двигателя, вручную довольно затруднительно. Функция AEO рассчитывает это автоматически и непрерывно. Если меняется профиль нагрузки, функция AEO реагирует на это изменение и настраивает напряжение, подаваемое на двигатель.

Рисунок 3. Рабочий диапазон функции AEO и экономия при использовании данной функции.

Даже без изменения оборотов функция AEO все еще экономит энергию. Чтобы обеспечить запас надежности функционирования и застраховать от проектных ошибок, большинство двигателей для систем HVAC имеют больший размер, чем требуется для работы с конкретной нагрузкой.

В результате, даже на полных оборотах, в условиях полного потока двигатель работает при неполной нагрузке. Без уменьшения напряжения, обеспечиваемого функцией AEO, двигатель работает неэффективно. С частотным преобразователем VLT HVAC Drive обычно следует отметить выходное напряжение с преобразователя частоты, которое меньше номинального значения, указанного на табличке с названием и номинальными данными двигателя, даже когда преобразователь частоты выдает полную частоту. Это скорее получаемая от функции AEO экономия, компенсирующая использование переразмеренного под конкретное применение двигателя, чем индикация неправильного состояния.

Читать еще:  Чем промыть систему охлаждения двигателя от масляной эмульсии

От применения функции AEO выигрывают также установки с переменными оборотами и постоянным объемом. Примером таких установок служит система вентилятора для чистой комнаты. В этом случае целью преобразователя частоты является поддержание постоянного потока воздуха, даже когда микрофильтр воздуха становится грязным. По мере того, как фильтр засоряется, частотный преобразователь автоматически увеличивает обороты вентилятора. ФункцияAEO гарантирует, что на валу двигателя всегда имеется достаточный крутящий момент, при этом поддерживается максимальный КПД двигателя.

Хотя максимизация КПД двигателя является основной целью функции AEO, имеются также и другие выгоды от ее применения. Тепловыделение в двигателе, основная причина отказа двигателей, сокращается. За счет уменьшения тепловых нагрузок в двигателе увеличивается срок службы двигателя. Уменьшенное выделение тепла в двигателе уменьшает также тепловую нагрузку от двигателя на окружающие элементы здания. В случаях установки больших двигателей в зонах с контролируемой температурой дополнительная экономия на затратах на охлаждение может быть существенной.

Уменьшенный ток также имеет дополнительную выгоду. Это отражается в снижении потерь энергии в преобразователе частоты и во всех других компонентах, подающих ток в двигатель, таких как трансформаторы или реакторы в линиях.

Работа нескольких двигателей

В установках, где имеется несколько работающих двигателей, но только один из них в каждый момент времени контролируется преобразователем частоты, таких как чередующиеся насосы, функция AEO будет максимизировать КПД того двигателя, который в данный момент работает. Метод динамического управления функции AEO автоматически реагирует на включенный двигатель и подает ток в соответствии с нагрузкой двигателя.

Поскольку функция AEO подстраивает выходное напряжение преобразователя частоты на конкретные требования конкретного двигателя, она не может работать надежно в установках с несколькими одновременно работающими двигателями. Если два или более двигателя одновременно подключаются к выходу регулируемого преобразователя частоты, функция AEO может только обеспечить выходное напряжение, которое корректно для среднего значения двигателей. В результате подаваемое на двигатели напряжение может оказаться слишком высоким для одного из двигателей и слишком низким для другого. Из-за проблем с возможным недонамагничиванием двигателя, этого следует избегать. Когда несколько двигателей одновременно управляются одним частотным преобразователем частоты, VLT HVAC Drive настраивается на предварительно запрограммированную кривую В/Гц для переменного крутящего момента.

Выводы

Двигатели в системах HVAC редко нагружаются полностью. Это связано с тем, что двигатели для конкретной установки обычно переразмерены, и потому, что нагрузка двигателя резко падает, когда уменьшается расход. Обычно на малых оборотах КПД двигателя небольшой.

Для улучшения КПД двигателя некоторые преобразователи частоты требуют наличия оператора системы, который регулирует выходные характеристики В/Гц. Эти ручные методы как обременительны, так и неточны. В результате, они используются редко. Кроме того, если изменяются требования к системе, оператор вынужден повторять настройки.

Уникальный алгоритм VVC+ частотного преобразователя VLT HVAC Drive детально контролирует потребности двигателя в токе. За счет этого регулируемый преобразователь частоты определяет нагрузку на двигатель, а функция автоматической оптимизации энергопотребления гарантирует, что двигатель в течение всего времени получает идеальное напряжение. Все это выполняется автоматически без необходимости вмешательства пользователя.

От чего зависит КПД

Ошибочно полагать, что КПД дизельного или бензинового двигателя может хоть как-то приблизиться к 100 %. На самом деле итоговый параметр во многом зависит от потерь:

  1. Потери при сгорании топлива стоит рассматривать первостепенно. Всё топливо, которое поступает в мотор, не может полностью сгорать, поэтому его часть просто улетает в выхлопную трубу. Потери в данном случае составляют около 25 %.
  2. Тепловые потери находятся на втором месте по значению. Получение тепла невозможно без энергии. Следовательно, энергия теряется при образовании тепла. Поскольку в случае с двигателем внутреннего сгорания тепло образуется с избытком, возникает необходимость в эффективной системе охлаждения. Однако тепло выделяется не только при сгорании топлива, но также во время работы самого мотора. Это происходит за счёт трения его деталей, поэтому часть энергии он теряет самостоятельно. На эту группу потерь приходится около 35 — 40 %.
  3. Последняя группа потерь имеет место в ходе обслуживания дополнительного оборудования. Расход энергии может идти на кондиционер, генератор, помпу системы охлаждения и прочие установки. Потери в данном случае составляют 10 %.

Страшно представить, что у нас остаётся, поскольку в случае с бензиновыми агрегатами это в среднем 20 %, в иных не более 5 — 7 % дополнительно. Следовательно, заливая 10 литров топлива, которые уходят за 100 км пробега, всего 2,5 литра уходит на полезную работу, тогда как остальные 7 — 8 литров считаются пустыми потерями.

Задачи

  • В чайник налили 1,5 л холодной воды, ее температура – 283˚ К. Чтобы довести ее до кипения, понадобилось 6 минут. Сила тока, потребляемая чайником – 11 А. Напряжение в электрической сети – 228 В. Рассчитать КПД чайника.
Читать еще:  Центральный замок не работает двигатель не запускается

Решение

Полезной работой в этом случае будет энергия, которая необходима для разогрева воды от 283˚ К до 373˚ К. Затраченной работой будет мощность чайника, умноженная на время закипания. Поэтому формулу КПД чайника запишем так:

Так как $m = rho V$, а $P = UI$, то окончательная формула КПД чайника будет выглядеть так:

Подставив в нее данные из условия, получим, что $eta = 0,63$. Или в процентах – 63%.

  • С помощью механического устройства груз массой 9 кг подняли на 20 м. КПД устройства – 70%. Найти силу, которую необходимо приложить к устройству, чтобы поднять груз.

Решение

И $F = <90 over 0,7>= 130 Н$ – сила, которую необходимо приложить к устройству.

Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

Далее, кроме тепла, выделяемого от горения, тепло выделяется и при самой работе двигателя, ведь все его части трутся, теряя тем самым часть своей энергии.

Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

Постоянные магниты — производители электроэнергии

Постоянный магнит может также явиться интересным предметом для получения энергии, ведь она не поступает к нему извне, а магнитное поле остается неизменным даже после того, как работа уже совершена.

Магнит имеет свойство притягивать различные вещи из железа и его сплавов. Притянув к себе некий предмет, он не расходует свою энергию, это просто свойство, которым он обладает и которое не может исчерпать. Поэтому на основе магнитов можно было бы сделать двигатель, близкий к вечному. Безусловно, нельзя не принимать во внимание изнашиваемость деталей, но сам принцип работы магнита создает условия для постоянной работы без растраты средств.

Правда, некоторые ученые считают, что со временем магнит теряет свои свойства. Это непроверенная информация, но не учитывать такой поворот событий тоже нельзя.

На основе магнитов много раз пытались создать подобие вечного двигателя, но пока эти попытки ни к чему не привели. Конечно, хочется верить, что в обозримом будущем учёные сделают прорыв и изобретут двигатель, который будет работать на возобновляемой энергии.

Интересно, что один из отечественных изобретателей — В. Чернышов — недавно продемонстрировал описание мотора, основанного на статичном магните, и его КПД, как удостоверяет сам экспериментатор, равняется более чем 100%.

Коэффициент ПД электродвигателя — это чрезвычайно важный показатель, который обусловливает производительность работы какого-либо движка. Чем его показатель выше, тем эффективнее движок. В моторе с КПД 95% почти вся затрачиваемая мощность расходуется на осуществление работы и всего 5% тратится не на требуемое действие (к примеру, на разогрев частей). Нынешние дизельные двигатели способны добиваться значения КПД 45%. Коэффициент маленький, но тем не менее он считается одним из самых производительных. КПД карбюраторных двигателей, работающих на бензине, еще более низкий.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector