Promlebedka.ru

Авто ДРайв
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические двигатели переменного тока принцип работы и устройство

Электрический двигатель — принцип работы электродвигателя

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Электродвигатель постоянного тока

Принцип действия этих двигателей основан на использования постоянных магнитных полей, создаваемых в корпусе устройства. Для их создания служит либо постоянный магнит, закреплённый на корпусе, либо электромагниты, расположенные по периметру ротора.

Основным отличием двигателей постоянного тока является наличие в их корпусе постоянно действующего магнита, закреплённого на корпусе машины. Мощность электродвигателя зависит от этого магнита, точнее от его поля. Магнитное поле в якоре создаётся при подключении к нему постоянного тока. Но для этого необходимо, чтобы полюса постоянного магнитного поля якоря менялись местами. Для этого используются специальные коллекторно-щёточные устройства. Они устроены в виде кольца-коллектора, зафиксированного на валу движка и подключённого к обмотке якоря. Кольцо разделено на сектора, разделённые диэлектрическими вставками. Соединение сектора коллектора с цепью якоря создаётся через скользящие по нему графитные щетки. Для более плотного контакта щётки прижимаются к кольцу коллектора пружинами. Графит применяется ввиду своей скользящей способности, высокой теплопроводности и мягкости. Его применение практически не вредит проводникам коллектора.

При большой мощности электромоторов постоянного тока использование постоянного магнита неэффективно из-за большого веса такого устройства и низкой мощности создаваемого постоянным магнитом поля. Для создания магнитного поля статора в этом случае используется конструкция из ряда катушечных электромагнитов, подключённых к отрицательной или положительной линии питания. Одноименные полюсы подключаются последовательно, их количество составляет от одного до четырёх, количество щёток соответствует количеству полюсов, но, в общем, конструкция якоря практически идентична вышеописанной.

Для упрощения запуска электрического двигателя используют два варианта возбуждения:

  • параллельное, при этом рядом с обмоткой якоря включается независимая регулируемая линия, используется для плавного регулирования оборотов вала;
  • последовательное возбуждение, что говорит о способе подключения дополнительной линии, в этом случае существует возможность резкого наращивания количества оборотов или его снижения.

Нужно отметить, что этот тип моторов имеет регулируемую частоту оборотов, что достаточно часто используется в промышленности и транспорте.

Интересно. В станках используются двигатели с параллельным возбуждением, что позволяет использовать регулировку количества оборотов, в то же время для грузоподъёмного оборудования подходит последовательное возбуждение. Даже эта особенность двигателей поставлена на службу человечеству.

Двигатель постоянного тока

Работа синхронных двигателей

Проходились по коллекторным двигателям – рассказывали, как конструировать – поэтому пропускаем сегодня семейство. Бессильны иначе рассказать вещи гораздо интереснее: ведется много споров на форумах. Собираемся рассмотреть не совсем синхронные двигатели – генератор. Наподобие украшающих ГЭС.

Вы никогда не задумывались, как регулируется скорость вращения турбины, когда на лопасть падает поток воды? Створками направляющего аппарата? Нет. Генератор требует подпитки не только постоянным током, но и переменным. Первое подаётся на ротор, а второе – на статор. В результате вал не мог бы даже стронуться с места, но ему помогает вода. А вот энергия торможения потока уже преобразуется в ЭДС рабочих катушек статора, намотанных рядом со вспомогательными.

Фактически имеем на руках устройство электродвигателя переменного тока, среди обмоток большая часть генерирующих, снимается частота 50 Гц. Синхронность обеспечивается питающими напряжениями. Если вода слишком напирает, ток возбуждения растет, срыв оборотов предотвращается. Параллельно увеличивается выходная мощность электростанции. Частота определяет характеристики снимаемого напряжения, касательно номинала 50 Гц не допускаются отклонения более долей процента (0,1%).

Читать еще:  Что лучше авто с бензиновым или дизельным двигателями

Вал вращается со скоростью 1-2 оборота в секунду. Многочисленными генераторными обмотками, соединенными параллельно образует нужную форму синусоиды. Подчеркиваем, частота поддерживается напряжением возбуждения, следовательно, именно к нему и предъявляются повышенные требования. Требуется получить больше мощности электростанции, просто заслонки направляющего аппарата приоткрываются, масса воды начинает падать вниз. Лопасть быстрее не двигается, увеличивается ток возбуждения, закономерно вызывает возникновение более сильных полей.

Принцип действия электродвигателя переменного тока копирует сказанное, отсутствуют генераторные обмотки. Требуется получить больше мощности – увеличьте напряжение возбуждения, амплитуду по цепи питания. Усиливается сцепление полей, исключая проскальзывание. Понятно, большая масса вала неспособна набрать за мгновение 50 Гц (и не набирает), оборудование, изготовленное правильно, за короткий период достигает режима. Скорость зависит от количества полюсов.

Не успели сегодня рассмотреть технические характеристики электродвигателей переменного тока, многократно делали прежде, применительно к различного рода устройствам. Полагаем, в будущем обзоры могут вновь повернуться к теме бушпритом.

Преимущества и недостатки асинхронных двигателей

Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.

Короткозамкнутый ротор более распространен.

Такие двигатели обладают следующими преимуществами:

  • относительно одинаковая скорость вращения при разных уровнях нагрузки;
  • не боятся непродолжительных механических перегрузок;
  • простая конструкция;
  • несложная автоматизация и пуск;
  • высокий КПД (коэффициент полезного действия).

Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.

Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:

  • хороший начальный вращающий момент;
  • нечувствительны к кратковременным перегрузкам механической природы;
  • постоянная скорость работы при наличии нагрузок;
  • малый пусковой ток;
  • с такими двигателями применяют автоматические пусковые устройства;
  • могут в небольших пределах изменять скорость вращения.

К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.

Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.

Интересное видео об асинхронных электродвигателях смотрите ниже:

Принцип действия статора

Катушки асинхронного электродвигателя называют обмотками, которые располагаются в пазах статора. У трехфазных асинхронных моторов имеются одинаковые фазные обмотки, размещённые симметрично друг к другу, и их оси образуют угол 120º.

Синусоида каждой фазы обмотки двигателя

Как известно, синусоида тока каждой фазы, относительно предыдущей, сдвинута на треть периода, из-за чего силы магнетических потоков в обмотках изменяются по такому же принципу. Сложив векторы направленности электромагнетического поля в отдельно взятый момент времени, можно получить суммарный магнитный поток.

Складывая данные векторы через разные интервалы периода можно заметить, что направление суммарного магнитного потока вращается синхронно колебаниям тока. Данные вращения магнетического потока можно рассматривать как вращающийся постоянный подковообразный магнит.

Таким образом, принцип работы двигателя переменного тока (синхронного или асинхронного) состоит в создании вращающегося электромагнитного поля статора.

Принцип синхронного вращения

Если для опыта подковообразный магнит прикрепить на ось вращения, то любой металлический предмет, закреплённый между полюсами на независимой оси, будет двигаться синхронно. Логично будет поместить в центр статора с трехфазными обмотками ротор в виде постоянного магнита, чтобы получить синхронный электродвигатель.

Синхронный электродвигатель

Но, даже если использовать мощные современные магниты, вихревые токи, образующиеся при переменном электромагнитном поле, будут нагревать ротор, тем самым лишая его магнитных свойств, которые зависят от температуры постоянного магнита. В отношении статора данную проблему решили, собрав сердечник в виде пластин из специальной электротехнической стали.

Статор собран из листов электротехнической стали . а) Собранный вид , б) сам статор

Читать еще:  Автоматическое включение ближнего света фар после запуска двигателя

Собрать таким способом ротор в виде пластинчатого постоянного магнита невозможно, поэтому использовали катушки возбуждения, являющиеся постоянным электромагнитом. Данный принцип действия электродвигателя является синхронным – роторный вал движется синхронно с электромагнитным полем статора, пребывающим во вращении.

Принцип действия асинхронного двигателя

В асинхронном электродвигателе с короткозамкнутым ротором нужно выделить два ключевых момента:

  • Индукция электрического тока в короткозамкнутых витках обмотки ротора, из-за вращающегося электромагнитного поля статора;
  • Возникновение магнитного потока роторных обмоток, взаимодействующего с пребывающим во вращении магнитным полем статора.

Рассмотреть процессы возникновения магнетического поля ротора нужно с момента запуска двигателя. Электромагнитное поле статора начинает вращение сразу же после подачи напряжения на статорные обмотки. Вал ротора находится в это время в состоянии покоя, и в его витках индуцируется переменный ток с частотой вращения поля.

В каждый момент времени, при прохождении полюса вращающегося электромагнитного поля около отдельно взятого короткозамкнутого витка, в нём создаётся взаимодействующее магнитное поле, которое стремится притянуть роторный виток вслед удаляющемуся полюсу движущегося электромагнитного поля.

Данные процессы происходят во всех короткозамкнутых витках при вращении поля вокруг них, из-за чего появляется суммарный вращательный момент роторного вала. Таким образом, принцип работы электродвигателя асинхронного типа состоит во взаимодействии электромагнитных полей статора и ротора.

Эффект скольжения

По мере набора оборотов валом двигателя, частота пересечения короткозамкнутых роторных витков силовых линий вращающегося магнитного потока будет уменьшаться. Вал двигателя будет стремиться догнать вращающееся поле.

Но, как только роторный вал и статорное поле установятся в состоянии покоя относительно друг друга, короткозамкнутые витки перестанут пересекать силовые линии электромагнитного поля, а значит, в них не будет индуцироваться электрический ток. Исчезновение ЭДС в витках ротора приведёт к потере момента вращения. Данное состояние электродвигателя называют идеальным холостым ходом.

Но в реальных условиях, сила трения будет приводить к потере инерции, и ротор электродвигателя будет запаздывать по отношению к пребывающему во вращении статорному полю, что вызовет возникновение ЭДС в короткозамкнутых витках из-за их пересечения силовых линий магнитного потока.

Данный эффект называют скольжением ротора относительно поля статора, с которым он никогда не сможет установиться в состоянии покоя и вращаться с ним синхронно.

Поэтому такие двигатели называют асинхронными (не синхронными). Иными словами, принцип работы двигателя с короткозамкнутым ротором состоит в эффекте скольжения, являющегося необходимым для возникновения ЭДС в роторных витках.

Оптимальный режим скольжения

Очевидно, что максимальная ЭДС в короткозамкнутых витках будет наводиться в момент запуска, но шихтованный роторный магнитопровод не рассчитан на столь частое перемагничивание, поэтому в данном режиме КПД электродвигателя и его вращательный момент будет низким.

С другой стороны, при приближении к синхронному движению роторного вала и поля статора, ЭДС будет приближаться к нулю, что также приведёт к исчезновению момента. Поэтому асинхронный электродвигатель, имеющий короткозамкнутые роторные витки, рассчитывают таким образом, чтобы коэффициент скольжения


составлял 2÷5%. В данных пределах характеристики мотора будут максимальными.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

Читать еще:  Шум при запуске на двигателях с цепью грм

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Универсальное коллекторное оборудование

Такой агрегат может работать на переменном и постоянном токе. Изготавливают его с последовательной обмоткой возбуждения при показателях мощности до 200 Вт. Статор выполняется из особой электротехнической стали. Обмотка возбуждения осуществляется при постоянном показателе напряжения полностью и частично при переменном показателе. Номинальное напряжение для переменного электротока составляют 127 и 220 В, аналогичные показатели для постоянного параметра равны 110 и 220 В. Находят применение в электроинструментах и бытовых аппаратах.

То, как работает электродвигатель, зависит от его принадлежности к тому или иному типу оборудования. Модификации переменного тока с питанием от промышленной сети 50 Гц не дают получить частоту вращения больше 3000 оборотов в минуту. Вот почему для получения значительных частот используют коллекторный мотор электрического типа. Он к тому же легче и меньше по размерам, нежели устройства с переменными показателями с аналогичной мощностью.

В их отношении используют специальные передаточные механизмы, преобразующие кинематические параметры механизма до приемлемых. При использовании преобразователей частоты и при наличии сети повышенной частоты двигатели переменного тока легче и меньше коллекторных изделий.

Ресурс асинхронных моделей с переменными показателями значительно выше, нежели у коллекторных. Определяется он состоянием подшипников и особенностями обмоточной изоляции.

Синхронный двигатель, у которого есть датчик положения ротора и инвертор, считается электронным аналогом коллекторного двигателя постоянного тока. Фактически он является коллекторным электродвигателем с последовательно включенными обмотками статора. Они идеально оптимизированы для работы с бытовой электросетью. Такую модель, независимо от полярности напряжения, можно вращать в одну сторону, так как последовательное соединение обмоток и ротора гарантирует смену полюсов из магнитных полей. Соответственно, результат остается направленным в одну сторону.

Статор из магнитного мягкого материала применим для работы на переменном токе. Это возможно, если сопротивление в перемагничивании у него незначительное. Чтобы снизить потери на вихревые токи, статор делают из изолированных пластин. Он получается наборным. Его особенностью является то, что потребляемый ток ограничивается за счёт индуктивного сопротивления обмоток. Соответственно, момент двигателя оценочно становится максимальным и варьируется от 3 до 5. Чтобы приблизить к механическим характеристикам двигатели общего назначения, применяются секционные обмотки. Они имеют отдельные выводы.

Примечательно, что для передвижения некоторыми видами бактерий используется электродвигатель из нескольких белковых молекул. Он способен трансформировать энергию электрического тока в форме движения протонов во вращении жгутика.

Синхронная модель возвратно-поступательного движения работает таким образом, что подвижная часть устройства оснащена постоянными магнитами. Они зафиксированы на шторке. Посредством неподвижных элементов постоянные магниты находятся под воздействием магнитного поля и проводят перемещение штока возвратно-поступательным методом.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector