Promlebedka.ru

Авто ДРайв
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство для уменьшения или увеличения оборотов двигателя

Устройство контроля оборотов двигателя УКОД-01 АИРЭ.466455.001 РЭ

Руководство по эксплуатации «Устройство контроля оборотов двигателя УКОД-01 АИРЭ.466455.001 РЭ» (pdf, 968 КБ)

Устройство контроля оборотов двигателя (УКОД) предназначено для ручного управления оборотами двигателя автомобиля в режиме холостого хода.

Корпус УКОД выполнен из ударопрочного АБС пластика в герметичном исполнении.

УКОД обеспечивает:

  • увеличение оборотов двигателя с шагом 50 об/мин;
  • уменьшение оборотов двигателя с шагом 50 об/мин;
  • ограничение и настройка максимальных оборотов двигателя.

Основные технические характеристики УКОД.

№ п/пХарактеристикиПараметры
1Номинальное напряжение питания+24 В (OBDII)
2Диапазон питающих напряженийот +10 до +33 В
3Потребляющая мощность в активном режимене более 0.5 Вт
4Диапазон рабочих температур-40. +85 °С
5Общий вес блоков с кабелем коммутациине более 2 кг
6Степень защиты корпуса УКОДIP 65
7Диапазон регулировки оборотов двигателя600. 2200 об/мин

Комплект поставки УКОД.

№ п/пНаименованиеКол., шт.
1Устройство контроля оборотами двигателя УКОД-011
2Кабель интерфейсный OBD-2 (от УКОД) L=1м.1
3Кабель интерфейсный OBD-2 (до диагностического разъема машины) L=12м.1
4Руководство по эксплуатации1
5Упаковка1

Примечание: Из корпуса УКОД (через гермоввод) выходит кабель длинной — 1 м, он стыкуется разъёмом с интерфейсным кабелем длинной – 12 м, который подключается к диагностическому разъему OBDII электронного блока управления (ЭБУ) автомобиля.

* — длина кабеля может быть изменена по предварительному согласованию с заказчиком, до заключения договора поставки. Изготовитель оставляет за собой право вносить в конструкцию УКОД изменения, не ухудшающие его характеристики.

Установочные и габаритные размеры УКОД.

Внешний вид УКОД с габаритными и присоединительными размерами.
* — размеры для справок. Кабель условно не показан.

Кабель интерфейсный OBD-2 к диагностическому разъему машины.

Упаковка

Каждое изделие согласно комплекту поставки упаковывается в индивидуальную тару из гофрированного картона.
Перемещение изделий внутри транспортной тары не допускается.
Упакованные изделия укладываются в транспортную тару — ящик из гофрированного картона ГОСТ 22637.

Гарантии изготовителя

Средняя наработка на УКОД должна быть не менее 15000 ч (или 220000 км).
Средний срок службы УКОД должен быть не менее 10 лет.
Гарантийный срок эксплуатации — 12 месяцев со дня продажи.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

В себя включает:

Плата управления коллекторного электродвигателя с поддержанием мощности уже нашла широкое применение в хозяйстве людей и широко охватила лиц занимающихся различным хобби и профессиональной деятельностью.

  • — Гриндер,
  • — Медогонка,
  • — Наждак,
  • — Точило,
  • — Соломорезка,
  • — Газонокосилка,
  • — Токарный станок,
  • — Токарный по дереву,
  • — Фрезерный станок,
  • — Сверлильный станок,
  • — Крупорушка,
  • — Корморезка,
  • — Устройства для вращения массивных предметов,
  • — Ленточная пила и т.д.

Посмотреть все изделия с данным регулятором вы можете здесь: видео

Характеристики
КомплектацияРезистор регулировки оборотов / Реверс (доп. опция) / Измеритель числа оборотов — Тахометр (доп. опция)
Мощность3000 W.
Напряжение питания220 V, 50 Hz.
Размер96х96х32 мм.
Сфера примененияКоллекторные электродвигатели (двигатели с щетками)

Работа дизелей, оснащенных ТНВД плунжерного типа, характеризуется крайне неустойчивой частотой вращения. Во время работы машины нагрузка постоянно меняется и соответственно меняется нагрузка на двигатель. Характер изменения нагрузки может быть достаточно интенсивным: от резкого увеличения, например, при разгоне или движении на подъем (наброс нагрузки), до резкого снижения, например, при движении на спуске (сброс нагрузки).
Так, при резком снижении внешней нагрузки дизеля частота вращения коленчатого вала увеличивается, что вызывает увеличение цикловой подачи топлива.

Это происходит вследствие сокращения времени прохождения плунжером окон втулки и соответственно сокращения количества вытесняемого топлива из надплунжерного пространства через эти окна.
Кроме того, регулятор опережения впрыска топлива при увеличении оборотов корректирует начало подачи и, таким образом, обороты двигателя прогрессирующе возрастают.
Данное явление тем более характерно, чем меньше активный ход плунжера. Возрастание цикловой подачи приводит к дальнейшему росту частоты вращения клеенчатого вала, и если нагрузка не увеличится, то это может привести к «разносу» двигателя (саморазрушению)

Увеличение внешней нагрузки двигателя и снижение вследствие этого частоты вращения коленчатого вала, наоборот, приводит к увеличению количества перетекающего топлива в окна втулки и соответственно к сокращению поданного количества топлива через штуцер к форсунке.
Поэтому дизели при возрастании внешней нагрузки склонны к останову.

Водитель не всегда может среагировать на колебания нагрузки, поэтому данную функцию выполняют специальные следящие устройства – регуляторы частоты вращения , предназначенные для автоматического поддержания частоты вращения коленчатого вала в заданных пределах.

Регуляторы частоты вращения классифицируют:

  • по воздействию на орган управления – прямого и непрямого действия;
  • по поддержанию заданного режима – одно-, двух- и всережимные.

Регуляторы прямого действия воздествуют непосредственно на орган управления подачей топлива (рейку ТНВД или дроссельную заслонку карбюратора). Регуляторы непрямого действия воздействуют на них через дополнительную систему – электрический или гидравлический усилитель.

Однорежимные регуляторы поддерживают только один скоростной режим, чаще всего максимальный, не позволяя двигателю превышать предельно допустимые обороты и работать вразнос.

На автомобильных двигателях регуляторы должны ограничивать, как минимум, максимальную и минимальную частоты вращения коленчатого вала. Такие регуляторы называются двухрежимными.
На отечественных дизелях используются всережимные регуляторы частоты вращения, которые автоматически поддерживают заданную водителем частоту вращения коленчатого вала на всем диапазоне нагрузок.

Всережимный регулятор частоты вращения

Всережимные регуляторы частоты вращения устанавливаются на двигателям марок «ЯМЗ», «КамАЗ», двигателе ММЗ Д-235.12 (автомобиль ЗИЛ-5301 «Бычок»).

На рисунке 1 приведена конструкция регулятора двигателя ЯМЗ-238 и схема его работы.

Данный регулятор устанавливается на заднем торце топливного насоса высокого давления (ТНВД). Ведущее зубчатое колесо 1 регулятора приводится во вращение от кулачкового вала топливного насоса через резиновые сухари 27, которые в ней установлены. Резиновые сухари поглощают ударные нагрузки при резком изменении частоты вращения. Ведомое зубчатое колесо 3 установлено в корпусе 4 на двух шариковых подшипниках.

Ведущее и ведомое зубчатые колеса образуют повышенную передачу с целью увеличения чувствительности регулятора. Ведомое зубчатое колесо изготовлено заодно с валиком, на который напрессована державка 5.
На осях державки шарнирно закреплены два грузика 29, которые своими роликами упираются в торец муфты 26, которая через радиально-упорный подшипник и пяту 25 передает усилие силовому рычагу 19, подвешенному на оси 13.

Пята регулятора с помощью рычага 20 и тяги 11 связана с рейкой 6 топливного насоса, которая при расхождении грузиков перемещается в сторону уменьшения подачи топлива. В верхней части к рычагу 20 присоединена пружина 8, а в нижней части рычага запрессован палец 23, который входит в паз кулисы 24. Кулиса соединяется со скобой 21 останова двигателя через распложенную внутри кулисы пружину, предохраняющую механизм регулятора от чрезмерных усилий при выключении подачи топлива.

Пружина 14 регулятора одним концом соединена с рычагом 12, который жестко связан с рычагом 9 управления регулятором, а вторым – с двуплечим рычагом 15. Усилие пружины передается с двуплечего рычага на винт 16.

Регулятор работает следующим образом.
При вращении кулачкового вала ТНВД и валика с державкой 5 центробежная сила грузиков 29 стремится развести их в стороны и через ролики 30 переместить муфту 26 с пятой 25 вправо. Этому препятствует пружина 14, которая тянет нижнее плечо рычага 15 вверх и через винт 16 и рычаг 19 отжимает пяту 25 влево.
Таким образом, на муфту 26 и пяту действует две силы: направленная вправо центробежная сила грузиков и направленная влево сила, создаваемая пружиной 14.

При определенном натяжении пружины развивается частота вращения, при которой эти две силы взаимно уравновешиваются. Тогда все подвижные детали регулятора (грузики, муфта, пята, рычаги 15, 19 и 20, тяга 11), а также рейка 6 и плунжеры занимают положение, обеспечивающее работу двигателя с заданной частотой вращения.

Читать еще:  Форд гелакси сколько масла заливать в двигатель

Если нагрузка на двигатель уменьшится (например, при движении автомобиля под уклон), частота вращения коленчатого вала начнет возрастать и увеличивающаяся сила грузиков передвигает муфту с пятой вправо (при этом пружина, натянутая водителем через рычаги 9 и 12, еще больше растянется). Пята повернет рычаг 20 по часовой стрелке, и тяга 11 выдвинет рейку из корпуса ТНВД, рейка повернет плунжеры, и подача топлива уменьшится, что приведет к уменьшению частоты вращения коленчатого вала двигателя.

Если нагрузка увеличится (автомобиль движется на подъем или по труднопроходимому участку местности), частота вращения коленчатого вала начнет падать и вместе с тем уменьшаться центробежная сила грузиков, а так как сила натяжения пружины заданная водителем остается неизменной, то ее усилия становится достаточно, чтобы передвинуть рейку ТНВД в сторону увеличения подачи топлива.
В результате увеличения подачи топлива частота вращения коленчатого вала сохраняется и будет таким образом поддерживаться постоянной при заданном водителем через педаль управления положении рейки насоса.

Водитель может по своему усмотрению изменить частоту вращения коленчатого вала, а значит, и скорость движения автомобиля с помощью педали управления подачей топлива, установленной в кабине. При нажатии на педаль система тяг и рычагов перемещает тягу 28 влево, рычаг 9 поворачивает валик с рычагом 12 против часовой стрелки и сильнее натягивает пружину 14.
Усилием пружины детали 15 и 19 перемещают пяту 25 и рычаг 20 влево, и рейка перемещается влево (в сторону увеличения подачи топлива), в результате чего частота вращения увеличивается.

Когда водитель освобождает педаль подачи топлива полностью, двигатель работает на режиме холостого хода. Натяжение пружины 14 регулятора на этом режиме регулируется винтами 16 и 17.

Чтобы заглушить двигатель, водитель должен вытянуть кнопку «стоп», расположенную в его кабине. Тогда трос, на конце которого закреплена кнопка, повернет скобу 21 с кулисой 24 в положение, показанное на рис. 2, б штрихпунктирной с двумя точками линией, а кулиса поворачивает рычаг 20 вокруг его оси, закрепленной в пяте 25. Нижний конец рычага 20 переместится влево, верхний конец его переместит рейку еще немного назад и подача топлива в цилиндры прекратится.

Регулятор ТНВД серии 33

Регулятор насоса серии 33 (двигатель КамАЗ-740) скомпонован в развале секций насоса (внешний вид регулятора КамАЗ-740 на рисунке в верху страницы).
Привод вала регулятора – от вала насоса через три шестерни, ведущая из которых соединена с валом насоса через резиновые сухари.
На валу регулятора отлита крестовина 2 (рис. 3), на котором шарнирно закреплены двуплечие рычаги с грузами 3. Одни из плеч рычагов упираются в муфту 4, а она – в промежуточный рычаг 5, управляющий верхней рейкой 1. Этот рычаг установлен на одном шарнире с главным рычагом 6, на который воздействует главная пружина 9.
Рейка нижнего (левого) ряда перемещается коромыслом 18 в обратную сторону. Регулятор имеет корректор и пружину обогатителя.
Работа этого регулятора (рис. 3, в) аналогична работе рассмотренного выше всережимного регулятора двигателя ЯМЗ-238.

Двухрежимный регулятор частоты вращения

Особенностью двухрежимного регулятора частоты вращения (рис. 2) заключается в том, что при работе дизеля на малых частотах вращения коленчатого вала грузики 6 уравновешиваются только внешней пружиной 2. Любое изменение частоты вращения нарушит равновесие между центробежной силой грузиков 6 и усилием пружины 2, что приведет к перемещению муфты 5 и рейки 4 в сторону увеличения или уменьшения подачи топлива.
В результате частота вращения будет удерживаться в заданном диапазоне.

При переходе на режим частичных нагрузок водитель, воздействуя на педаль управления подачей топлива, увеличивает частоту вращения коленчатого вала. При этом грузики расходятся и, преодолевая сопротивление внешней пружины, доводят муфту 5 до соприкосновения с внутренней пружиной 3.
Однако пружина 3 имеет значительную жесткость и установлена с предварительной деформацией, поэтому в дальнейшем регулятор исключается из работы, так как грузики не могут преодолеть совместное сопротивление двух пружин, а перемещение рейки ТНВД происходит непосредственно под воздействием водителя на педаль, систему тяг, рычага 1 и рейки 4.
При достижении предельной частоты вращения центробежной силы грузиков становится достаточно для преодоления сопротивления пружин, и регулятор снова включается в работу.
В результате муфта 5 и рейка 4 перемещаются в сторону уменьшения цикловой подачи топлива.

На рис. 4 показан двухрежимный регулятор частоты вращения, устанавливаемый на двигателе ЗИЛ-645. Регулятор обеспечивает устойчивую работу на холостом ходу при частоте вращения коленчатого вала 600…650 об/мин.

Регулятор имеет два цилиндрических пустотелых грузика 13, установленных на крестовине 14. Внутри каждого грузика находятся пружины: наружная пружина для ограничения частоты вращения холостого хода и внутренняя для ограничения максимальной частоты вращения; тарелки 20 пружин с регулировочной гайкой.

При неподвижном коленчатом вале грузики прижаты пружинами к крестовине. Во время вращения коленчатого вала грузики под действием центробежных сил расходятся, сжимая наружную пружину. При этом угловой рычаг 10 перемещает ползун 9 углового рычага влево, который при помощи оси 8 кулисы выдвинет рейку насоса вправо, уменьшая подачу топлива и ограничивая частоту вращения коленчатого вала.

Если частота вращения коленчатого вала станет меньше 650 об/мин, регулятор начнет задвигать рейку, увеличивая подачу топлива. Таким образом, на холостом ходу ползун непрерывно перемещается, вследствие чего изменяется подача топлива и поддерживается заданная частота вращения.

При достижении частоты вращения 2850 об/мин центробежная сила грузиков начнет преодолевать сопротивление пружин, под действием системы рычагов рейка перемещается, уменьшая подачу топлива и частоту вращения коленчатого вала. На этом режиме ползун также перемещается, в результате чего частота вращения составляет 2850…2950 об/мин.
Между минимальным и максимальным значениями частоты вращения изменение подачи топлива осуществляется рычагом управления подачей топлива, связанным с педалью подачи топлива.

Что это за функция, принцип работы, электрическая схема, плюсы УШМ с регулятором

Большинство моделей болгарок не имеют встроенного регулятора оборотов, как на пылесосах. Такие устройства работают только на максимальной скорости вращения. Однако если встроить в них специальный регулятор, человек сможет понизить обороты до такого уровня, чтобы можно было более качественно обрабатывать тот или иной материал.

Для какой цели УШМ невысокие обороты

Многих людей интересует, для чего нужно регулировать обороты на болгарке. Чаще всего люди решают уменьшать скорость вращения круга, чтобы более бережно обрабатывать пластик или древесину.

Также при пониженной скорости возрастает безопасность использования такого электроинструмента. Дело в том, что при небольших оборотах болгарка меньше вибрирует и намного лучше сидит в руке.

Дополнительная информация! Многие профессионалы, которые регулярно пользуются болгарками от Деволт или Интерскол в домашних условиях, рекомендуют выводить регуляторы скорости за пределы устройства. Это в разы упрощает обслуживание инструмента. К тому же, болгарку не придется разбирать, если модуль настройки вращения сломается.

Для чего болгарке плавный пуск и регулятор оборотов

Регулятор вращения — позволяет самостоятельно устанавливать обороты во время использования электроинструмента

Читать еще:  Вычислить мощность двигателя по крутящему моменту и оборотами

В современных моделях углошлифовальных устройств применяются две технологии, которые увеличивают безопасность и характеристики электроинструмента:

  • Регулятор скорости вращения. Это устройство устанавливается для того, чтобы человек смог переключать режимы работы мотора.
  • Плавный пуск. Чаще всего данная функция встречается в дорогих моделях от Диммер. При использовании плавного спуска работа мотора будет постепенно увеличиваться от нулевой отметки до максимального значения.

Вышеперечисленные технологии очень полезны. Дело в том, что с их помощью удается снизить изнашиваемость инструмента и увеличить срок его работы. Поэтому людям, которые решили приобрести себе болгарку, рекомендуется искать модели со встроенным плавным спуском и регулятором вращения.

Схема подключения без регулятора мощности

Схема подключения — может понадобиться во время подсоединения модуля настройки мощности

Люди, которые решили самостоятельно подключить устройство для настройки оборотов, должны заранее ознакомиться со схемой болгарки. Это поможет понять, как в ней все устроено.

Главным элементом всей схемы является статор. У него есть две на связанные между собой обмотки. Они подключены к источнику напряжения через отдельный выключатель. Именно в нем установлена кнопка пуска, которая отвечает за начало работы болгарки.

Каждая из имеющихся обмоток подключена к графитовым щеткам при помощи специальных контактов, которые надежно соединены с поверхностью коллектора. При этом концы обмотки подключены к коллекторным ламелям. В результате этого получается замкнутая электрическая цепь.

Особенности использования регуляторов скорости

В качестве элемента системы, автоматического изменения скорости вращения, вентиляционных устройств частотный регулятор обеспечивает контроль функционирования всего вытяжного механизма. При этом в процессе использования устройства для регулировки оборотов любых, в том числе и асинхронных двигателей, появляются дополнительные шумы, которые можно устранить, только используя трансформаторный регулятор.

Также кроме шума во время работы электродвигателя на разных скоростях могут появиться электромагнитные помехи, устранить которые можно за счёт экранированного кабеля. При использовании трёхфазного регулятора с шумом проблем не возникает, но обязательна дополнительная установка сглаживающих фильтров. Но вне зависимости от модели используемого регулятора существуют рекомендации по их эксплуатации.

  1. Прежде чем включать устройство в сеть переменного тока важно проверить все соединительные элементы и провода на качество заземления.
  2. Чтобы устранить различные помехи в сети важно устанавливать специальный фильтр.
  3. Для недопущения перегрева регулятора оборотов мотора, его размещают в месте, куда не попадает солнце. В противном случае из-за повышения температуры устройство будет работать на предельной нагрузке и может перестать реагировать на показатели датчиков.
  4. Любой регулятор, в том числе и частотный для асинхронного двигателя должен размещаться вертикально, что позволит качественно рассеивать тепло, выделяемое, в процессе работы прибора.
  5. Не рекомендовано очень часто производить включение или выключение регуляторов, так как в процессе непрерывной работы они функционируют в оптимальных условиях и поэтому реже выходят из строя.

В настоящее время всё чаще используют частотные регуляторы, так как они имеют компактные размеры и невысокую стоимость по сравнению с трансформаторными аналогами. При этом во время работы такие устройства подают номинальное напряжение на электромотор.

Регуляторы оборотов электродвигателя

Схемы изменения частоты вращения электродвигателей в большинстве случаев построены на тиристорных регуляторах, ввиду своей простоты и надежности.

Принцип работы представленной схемы следующий: конденсатор С1 заряжается до напряжения пробоя динистора D1 через переменный резистор R2, динистор пробивается и открывает симистор D2, управляющий нагрузкой. Напряжение на нагрузке зависит от частоты открывания D2, зависящее в свою очередь от положения движка переменного сопротивления. Данная схема не снабжена обратной связью, т.е. при изменении нагрузки обороты также будут меняться и их придется подстраивать. По такой же схеме происходит управление оборотами импортных бытовых пылесосов.

Вот так работает хороший регулятор оборотов двигателя:

Изменение скорости вращения вала двигателя в стиральной машине, например, происходит с задействованием обратной связи от таходатчика, поэтому ее обороты при любой нагрузке постоянны.

С проблемой регулировки оборотов электродвигателя приходится сталкиваться довольно часто: это работа с различными электроинструментами, приводами швейных машинок, прочими электроприборами на производстве и в быту. Регулировать обороты с помощью понижения питающего напряжения зачастую не имеет смысла: резко уменьшаются обороты двигателя, он теряет мощность и останавливается. Поэтому оптимальным вариантом для регулирования числа оборотов двигателя является изменение напряжения с применением обратной связи по току нагрузки.

В большинстве случаев в электроинструментах и прочем оборудовании применяются универсальные коллекторные электродвигатели с последовательным возбуждением. Они одинаково хорошо работают как от переменного, так и от постоянного тока. Особенность работы коллекторного электродвигателя заключается в том, что во время коммутации обмоток якоря при размыкании на ламелях коллектора возникают импульсы противо-ЭДС самоиндукции. По амплитуде они равны питающим импульсам, но по фазе – противоположны им. Угол смещения противо-ЭДС зависит как от внешних характеристик двигателя, так и от нагрузки и прочих факторов.

Вредное влияние противо-ЭДС приводит к искрению на коллекторе, а также потере мощности двигателя и дополнительному нагреву его обмоток. Некоторая часть противо-ЭДС гасится с помощью конденсаторов, шунтирующих щеточный узел.

Давайте рассмотрим процессы, которые протекают в режиме регулирования с обратной связью, на примере универсальной схемы (см. рис. 1). Опорное напряжение, которое определяет скорость вращения электродвигателя, формируется резистивно-емкостной цепью Р12-КЗ-С2. При увеличении нагрузки скорость вращения падает, при этом снижается и его крутящий момент. При этом уменьшается и противо-ЭДС, возникающая в двигателе и приложенная между катодом и управляющим электродом тиристора VS1. Это приводит к изменению на управляющем электроде тиристора напряжения, которое увеличивается пропорционально тому, как уменьшается противо-ЭДС.

Дополнительное напряжение на управляющем электроде тиристора приводит к его включению при меньшем фазовом угле (угле отсечки) и подаче на двигатель большего тока, что таким образом компенсирует снижение скорости вращения при увеличении нагрузки. Это приводит к наличию на управляющем электроде тиристора баланса импульсного напряжения, которое составлено из напряжения питания и напряжения самоиндукции двигателя.

При необходимости возможно перейти с помощью переключателя SA1 перейти на питание с помощью полного напряжения, без использования регулировки. Подбору тиристора по минимальному току включения необходимо уделить особое внимание, так это позволит обеспечить лучшую стабилизацию скорости вращения двигателя.

Вторая схема включения (см. рис.2) рассчитана на работу с более мощными двигателями, которые используются в шлифовальных машинах, деревообрабатывающих станках и дрелях. Принцип регулирования в ней остается прежним. Тиристор в этой схеме необходимо установить на радиатор с площадью не менее 25 кв.см.

При необходимости получения очень малых скоростей вращения или при применении для маломощных двигателей можно применять схему с использованием ИМС (см. рис. 3). Она питается от постоянного тока напряжением 12В. В случае питания от более высокого напряжения необходимо применить параметрический стабилизатор с напряжением стабилизации не выше 15В.

Регулировка скорости осуществляется с помощью изменения среднего значения напряжения импульсов, которые подаются на двигатель. С помощью таких импульсов возможно эффективно регулировать очень малые скорости вращения, так как они как бы “подталкивают” ротор двигателя. При повышении скорости вращения двигатель работает обычным образом.

Довольно несложная схема (см. рис. 4) предназначена для использования на линии игрушечной железной дороги. Она позволит избежать аварийных ситуаций и предоставит новые возможности при управлении составами. Лампа накаливания, находящаяся во внешней цепи, предохраняет и служит для сигнализирования о коротком замыкании на линии, ограничивая при этом выходной ток.

При необходимости регулирования оборотов двигателей с наличием на валу большого крутящего момента (например, в электролебедке) может пригодиться двухполупериодная мостовая схема, приведенная на рис. 5. Существенным отличием ее от предыдущих схем, где работает только одна полуволна питающего напряжения, является обеспечение полной мощности на двигателе.

Читать еще:  Газель не работает на бензине 406 двигатель карбюратор

Гасящий резистор R2 и диоды VD2 и VD6 используются для подачи питания на схему запуска. Задержка открывания тиристоров по фазе обеспечивается с помощью заряда конденсатора C1 через резисторы R3 и R4 от источника напряжения, уровень которого зависит от стабилитрона VD8. После заряда конденсатора C1 до порога срабатывания однопереходного транзистора VT1, последний открывается и запускает тот тиристор, на аноде которого имеется положительное напряжение. После разряда конденсатора однопереходный транзистор выключается. Номинал резистора R5 определяется желаемой глубиной обратной связи и типом двигателя. Для расчета его величины используется формула:

где Iм – эффективное значение максимального тока нагрузки для данного типа двигателя.

Предложенные схемы легко повторяются, но требуют произвести подбор некоторых элементов в зависимости от характеристик применяемого электродвигателя (к сожалению, практически невозможно найти электродвигатели, идентичные по всем параметрам, даже в пределах одной серии).

Для решения определенных производственных задач нередко требуется уменьшить обороты электродвигателя. В настоящее время эта задача решается путем включения в питающую сеть специальной автоматики, а именно преобразователя частоты. При этом работа двигателя через частотный преобразователь имеет свои особенности.

Когда вы уменьшаете количество оборотов электродвигателя, меняются следующие характеристики агрегата, на которые следует обратить внимание, прежде чем подключать обычный мотор:

  1. Величина пускового тока
  2. Величина частоты тока
  3. Температура обмотки статора

Прежде всего, следует обратить внимание на изменение величины температуры в обмотке статора. Поскольку двигатель в его стандартной комплектации оборудован вентилятором, который установлен на валу мотора, когда будут изменены обороты двигателя, вращения вентилятора не хватит что бы охладить агрегат. Для решения этой задачи в обязательном порядке применяют узел принудительной вентиляции для охлаждения электродвигателя при изменении его оборотов на выходе. При этом насколько больше будет диапазон изменения частоты тока в агрегате, настолько более ответственно следует подойти к выбору дополнительных опций для комплектации мотора.

Схема работы регулятора числа оборотов;

а-положение деталей при не работающем двигателе; б-работа регулятора при уменьшении нагрузки на двигатель; в-работа регулятора при увеличении нагрузки на двигатель; г-остановка двигателя.

Регуляторы подобного рода называются всережимным. Установка их позволяет улучшить условия вождения, увеличить долговечность двигателя и повысить его экономичность при работе с недогрузкой.

Регулятор двигателей МТЗ работает следующим образом на валу ведомой шестерни регулятора, вращающегося на шариковых подшипниках, установлена державка центробежных грузов. К ним подходит торец муфты. На противоположном конце этой муфты установлен шариковый подшипник, в который входит упорная пята.

Рычаг управления подачей топлива нижним концом жестко насажен на вал. На этом валу так же жестко насажен рычаг с пружиной, нижний конец которой закреплен в двуплечем рычаге. Двуплечий рычаг свободно подвешен на оси.

регулятор числа оборотов

Если положение рычага 10 будет изменяться, то, следовательно изменится и угол между продольной осью рычага 12, пружиной 8 и двуплечим рычагом 7. С изменением угла длина пружины станет иной, и ее натяжение, т. е. усилие, также станет иным. Усилие пружины воспринимается регулировочным винтом и Передаётся рычагу 5 регулятора.

Когда двигатель не работает, верхняя части рычага 10 упирается в болт регулировки минимальных оборотов холостого хода. Вал 3 и закрепленный на нем рычаг 12 пружины поворачиваются, так, что пружина 8, оказывается несколько растянутой. Усилие растянутой пружины передается нижнему концу двуплечего рычага 7. Поворачиваясь вокруг оси 23, рычаг чёрез регулировочный винт давит на рычаг 5 регулятора, плунжеры повернуты в положение наибольшей подачи

регулятор оборотов

После пуска двигателя грузы 16 действием центробежной силы расходятся и, поворачиваясь вокруг осей упираются своими роликами в торец муфты 22, которая вместе с радиально-упорным подшипником и пятой 2 начинает двигаться влево. Вместе с пятой, начинает перемещаться рычаг 13 выдвигая рейку 15. Подача топлива при этом уменьшится.

Когда пята 2 достигнет конца рычага 5 и упрется в него, в некоторый момент создастся, положение при котором центробежные силы грузов уравновесятся усилием пружины 8. Как только это произойдет, сразу же прекратится перемещение рычага 13 и рейки 15. Уменьшение подачи топлива прекратится, и двигатель будет работать на минимальном числе оборотов холостого хода.

Чем дальше перемещаются пита 2 и рычаг 5, тем больше растягивается пружина 8 и с увеличивающейся силой противодействует передвижению рычага. Когда же центробежные силы грузов и усилие пружины уравновесятся движение пяты и рычагов прекратится. Рейка насоса займет некоторое определенное положение, подача топлива станет при этом постоянной и двигатель начнет работать на постоянном скоростном режиме.

регулятор оборотов

При изменении нагрузки ‚на двигатель регулятор автоматически, без вмешательства водителя, изменяет подачу топлива. Если, например, нагрузка упадет и число оборотов коленчатого вала возрастет, то грузы 16 разойдутся, пята 2 передвинет рычаг’13, рейка 15 начнет выдвигаться из корпуса насоса, и подача топлива уменьшится. Уменьшение подачи топлива будет происходить до тех пор, пока центробежные силы грузов и усилие пружины не уравновесятся.

Следовательно, каждому числу оборотов двигателя соответствует определенная степень расхождения грузов.

При возрастании нагрузки на двигатель число оборотов коленчатого вала снизится, центробежные грузы сблизятся, система рычагов передвинет рейку в корпус насоса, и подача топлива увеличится.

Колебание числа оборотов при использовании регулятора составляет 30 об/мин. Таким образом, регулятор насоса ЯМЗ как бы следит за режимом работы двигателя и обеспечивает соответствующую подачу топлива в цилиндры.

регулятор числа оборотов

Как уже упоминалось, водитель может также, пользуясь педалью подачи топлива, изменить скорость вращения коленчатого вала. При нажатии на педаль рычаг 10 повертывается, натяжение пружины 8 увеличивается, и под ее действием рычаг 5 также повертывается, перемещая пяту 2 и рычаг 13 с рейкой 15 в сторону увеличения подачи. Подача топлива будет увеличиваться до тех пор, пока сила натяжения пружины не, уравновесит центробежные силы и грузы регулятора не будут удерживаться на постоянном расстоянии от оси вала регулятора.

Если водитель отпустит педаль, то сила натяжения пружины 8 уменьшится, рычаги 5 и 13 переместят рейку 15 в сторону уменьшения подачи, и число оборотов коленчатого вала снизится.

Болтом 11 ограничивают ход рычага 10 и этим устанавливают максимальное число оборотов двигателя, а болтом 9 минимальное число оборотов.

Проверка и регулировка топливного насоса и регулятора производятся на специальном стенде.

Нижняя часть рычага 13 имеет штифт, входящий в прорезь кулисы 18. Если нажать на скобу 1, то связанная с ним кулиса 18 переместит через штифт нижнюю часть рычага 13. Верхний конец этого рычага, поворачиваясь вокруг оси, находящейся на пяте 2, через тягу потянет за собой рейку насоса 15.

В нижней части рычага 5 размещено специальное устройство—корректор. В процессе эксплуатации автомобиля поворотом корпуса буферной пружины корректора можно поддерживать устойчивую работу двигателя на минимальном числе оборотов;

Регулятор топливного насоса двигателя Д- 12А механический‚ центробежный. Шаровые грузы 9 регулятора располагаются в пазах крестовины З, которая закреплена на коническом конце кулачкового вала насоса. С противоположной стороны грузы упираются в плоскую тарель 10, имеющую возможность свободно вращаться и передвигаться вместе со втулкой вдоль оси по хвостовику крестовины. При увеличении числа оборотов грузы 9 отжимают плоскую тарель; перемещение ее передается на рычаг 1, рейка 4 выдвигается из корпуса, уменьшая при этом подачу топлива.

СМОТРИТЕ ВИДЕО

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector