Promlebedka.ru

Авто ДРайв
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каком тепловом двигателе при совершении работы

Тепловой двигатель

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Устройство, от которого рабочее тело получает тепло Q n , называю нагревателем.

Это понимается как расширение от объема V 1 к V 2 V 2 > V 1 , затем сжатие до первоначального объема. Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии. То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Q n , то при сжатии Q ‘ c h теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆ U = 0 , то значение работы газа в круговом процессе запишется как:

A = Q n — Q ‘ c h ( 1 ) .

Отсюда теплота Q ‘ c h ≠ 0 . Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

Запись уравнения ( 2 ) при учитывании ( 1 ) примет вид:

η = Q n — Q ‘ c h Q n ( 3 ) , КПД всегда.

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Q c h и отдающая его Q ‘ n телу с наиболее высокой температурой с Q ‘ n > Q c h , получила название холодильной машины.

Данная машина должна совершить работу A ‘ в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

a = Q ‘ n A ‘ = Q ‘ n Q ‘ n — Q c h ( 4 ) .

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

Гибридное будущее: Михаил Гордин о тенденциях развития авиационных двигателей (интервью)

В рамках Международного авиакосмического салона МАКС-2021 Центральный институт авиационного моторостроения имени П.И. Баранова (ЦИАМ, входит в НИЦ «Институт имени Н.Е. Жуковского») показал несколько перспективных разработок, посвященных гибридным (ГСУ) и электрическим силовым установкам. Самой впечатляющей стала летающая лаборатория Як-40 с ГСУ на основе электродвигателя на высокотемпературных сверхпроводниках, которая во второй день работы авиасалона совершила демонстрационный полёт. На стенде института был представлен макет сверхмощной ГСУ, а на статической стоянке – полностью электрический двухместный самолёт «Сигма-4Э».

О тенденциях развития авиационных двигателей, о высокотемпературных сверхпроводниках и их преимуществах в интервью «Авиации России» рассказал генеральный директор ЦИАМ Михаил Гордин.

– Михаил Валерьевич, расскажите, пожалуйста, когда ЦИАМ начал заниматься тематикой ГСУ, какой научно-технический задел был использован или пришлось всё полностью разрабатывать с нуля?

– Заниматься этой тематикой ЦИАМ начал с конца 2008 года. Первоначально нами было разработано четыре БПЛА на водородных топливных элементах. Сначала – зарубежных, а семь лет назад, в июле 2014 года, мы впервые подняли в небо беспилотник на топливных элементах отечественного производства. Они были разработаны Институтом проблем химической физики РАН по техническому заданию ЦИАМ. В те же годы проводились первые расчётные исследования по перспективным проектам. В частности, была выполнена большая работа по оценке эффективности применения различных типов гибридных и электрических силовых установок для гражданских вертолётов.

В 2017 году стартовала первая целенаправленная работа по формированию научно-технического задела в области ГСУ, и ЦИАМ был выбран её головным исполнителем. В том же году в институте создали тематический отдел, специалисты которого сосредоточились на оценке эффективности технологий ГСУ для различных типов летательных аппаратов, разработке математических моделей отдельных элементов и совершенствовании экспериментальной базы для их исследований, разработке и создании первых экспериментальных образцов.

До начала работ нами был проведён комплексный анализ мирового опыта, проблемных мест и критических технологий. Такой анализ мы делаем регулярно, чтобы быть в курсе мировых тенденций. И параллельно мы провели тщательный отбор соисполнителей для последующих работ.

– Для многих выражение «высокотемпературные сверхпроводники» звучит впечатляюще и одновременно загадочно, непонятно, что это за технология и почему высокотемпературные. Не могли бы вы рассказать, почему сверхпроводимость легла в основу гибридной силовой установки? Почему нельзя было применить обыкновенный мощный электродвигатель?

– Сверхпроводник – это материал, в котором при охлаждении до криогенных температур практически полностью исчезает электрическое сопротивление. Низкотемпературные сверхпроводники работают при температурах жидкого гелия, т.е. меньше 4К (-269°С). Высокотемпературные сверхпроводники работают при больших температурах, вплоть до температуры кипения жидкого азота в нормальных условиях (77К или -196°С). Именно отсутствие электрического сопротивления позволяет сделать электрическую машину очень компактной и лёгкой, добиться КПД порядка 99%.

Мы сейчас работаем с жидким азотом, но при температуре кипения жидкого водорода (20К или -253°С) максимальный удельный ток сверхпроводника вырастет в разы и составит 5000 А/мм² и более. Столь высокий показатель удельного тока позволяет кратно увеличить мощность электродвигателя и генератора при сохранении прежних габаритов и массы. Так, генератор при охлаждении жидким азотом выдаёт мощность 800 кВт, а при переходе на жидкий водород будет выдавать 2,5 МВт. Аналогично, мощность электрического двигателя вырастет с 500 кВт до 1,5 МВт – практически втрое.

И водород, в отличие от азота, можно будет использовать не только для охлаждения электродвигателя и генератора, но и в качестве топлива. Это позволит увеличить экономичность двигателя и сократить объём выбросов СО2 до нулевых показателей.

– Михаил Валерьевич, при всех плюсах гибридной силовой установки, нельзя не заметить и явные минусы – необходимость тяжёлых аккумуляторов, жидкий азот (или водород) для охлаждения электродвигателя. С аккумуляторами всё понятно: существующие сегодня технологии пока не позволяют изготовить ёмкие, компактные и лёгкие аккумуляторы, но жидкий азот – это агрессивная среда. Как обеспечивается безопасность экипажа, обслуживающего персонала и самолёта в целом от возможных протечек этого газа?

– В схеме ГСУ, представленной на Як-40ЛЛ, мы вынесли бак с азотом за пределы герметичного корпуса самолёта, чтобы сделать его обслуживание максимально безопасным. Что касается водорода, он имеет критически низкую молярную массу, из-за чего в случае утечки очень быстро улетучивается и не образует опасной концентрации. Если отойти немного в сторону от авиации, то на всех мощных электростанциях водород используется для охлаждения электрических генераторов – речь идёт уже о сотнях мегаватт. Главное – это соблюдение правил технической безопасности, оно актуально для любого типа топлива – авиакеросина, бензина, природного газа.

– Как работает ГСУ в полёте? Каков цикл работы турбовального двигателя – он включен постоянно или только периодически, чтобы подзарядить блок аккумуляторных батарей, которые уже запитывают электродвигатель?

– Гибридные силовые установки могут быть построены по параллельной и последовательной схемам. При параллельной схеме на валу теплового двигателя расположена обратимая электромашина, которая работает либо как мотор, создавая дополнительную мощность на валу при взлёте и наборе высоты, либо как генератор, отбирая мощность для зарядки аккумуляторов. При последовательной схеме питание одного или нескольких электромоторов осуществляется одновременно от блока аккумуляторных батарей и от электрического генератора, вращаемого тепловым двигателем. Оба источника выдают энергию в режимах взлёта и набора высоты, когда требуется большая мощность. На крейсерском режиме тепловой двигатель даёт энергию на электродвигатель и может дополнительно заряжать аккумуляторы. В случае отказа теплового двигателя заряда аккумуляторных батарей хватит для совершения экстренной посадки воздушного судна.

– Где в мире, кроме России, идут разработки подобных ГСУ? Насколько они продвинулись вперед?

– Программы, посвящённые гибридизации, есть в активе у всех ведущих разработчиков и производителей авиационной техники. Среди них – Airbus, Boeing, NASA, Rolls-Royce, Safran и другие. Стоит также отметить большое количество стартапов и особый интерес со стороны автопроизводителей.

Россия достигла однозначного первенства именно в применении сверхпроводимости. Его удалось добиться за счёт тесной кооперации между ведущими научными институтами и высокотехнологичными предприятиями-разработчиками. Координатором выступает НИЦ «Институт имени Н.Е. Жуковского». Каждый из институтов, входящих в НИЦ, вносит свой вклад в создание перспективного электрического самолёта в рамках своих основных компетенций: ЦИАМ – головной исполнитель проекта по разработке демонстратора ГСУ, ЦАГИ отвечает за облики летательного аппарата, ГосНИИАС – за бортовые системы, СибНИА – за испытания демонстраторов в составе летающих лабораторий.

Читать еще:  Через сколько меняется масло в двигателе у соляриса

Компания «СуперОкс» разработала обмотку из сверхпроводников для электродвигателя. Коллеги из УГАТУ совместно с ЦИАМ создали компактный и мощный генератор на 400 кВт.

Финансирование проектов осуществлялось Фондом перспективных исследований и Минпромторгом России.

– ЦИАМ участвует в разработке полностью сверхпроводящей ГСУ мощностью 2500 кВт, где в качестве топлива и хладоагента будет применён жидкий водород. На каком этапе работ вы сейчас находитесь? Когда планируется создать работающий демонстратор этой силовой установки?

– В проекте создания сверхмощной ГСУ на основе модернизированного турбовального двигателя ВК-2500 нами уже выполнен ряд наработок, а начало работ запланировано на 2022 год. Пойдём по уже отработанной схеме: создание наземного демонстратора, который пройдёт через комплекс испытаний на стендах, затем установка на летающую лабораторию для прохождения наземных экспериментов и последующая подготовка к выполнению первых полётов. С учётом сложности инженерных задач весь проект рассчитан на период до пяти лет.

– В электрическом контуре этой ГСУ будут применены топливные элементы. Какова их роль и почему в них нет необходимости в демонстраторе на Як-40ЛЛ?

– В схеме ГСУ с жидким водородом будут применены два источника энергии – топливные элементы и электрический генератор, вращаемый турбовальным газотурбинным двигателем. Топливный элемент имеет высокий КПД практически во всем диапазоне режимов работы, но его удельная масса в разы больше, чем у газотурбинного двигателя. По этой причине он не годится в качестве основного источника энергии и будет использоваться только в тех режимах, когда требуется дополнительная мощность.

В демонстраторе технологий на жидком азоте топливного элемента нет, так как у проекта иные задачи, которые не предполагали его создания и применения.

– В качестве двигателя в этой ГСУ будет применен турбовальный ВК-2500. Насколько трудоёмкая работа с точки зрения конструктора при перепроектировании двигателя с керосина на жидкий водород, какие узлы требуют пересмотра? Будет ли в этой ОКР использоваться задел, полученный ещё в СССР в ходе работ по двигателю НК-88 для Ту-155?

– Безусловно, нами будет использован научно-технический задел по советским проектам использования жидкого водорода в качестве авиатоплива. ЦИАМ принимал в них самое непосредственное участие. Замечу, что этот проект был первым и пока остаётся единственным в своем роде. В 1988 году при научно-технической поддержке ЦИАМ был создан двигатель НК-88, работающий на жидком водороде, совершён комплекс полётов летающей лаборатории Ту-155 с этим двигателем. Этот опыт пока никто в мире не смог повторить.

Что касается конструкторских работ, изменения будут внесены в систему автоматического управления двигателя, топливную систему и камеру сгорания. Работа предстоит сложная, но понимание, как её выполнить, есть.

– Сейчас на Як-40ЛЛ установлен электромотор мощностью 500 кВт, мощность ГСУ на жидком водороде будет 2500 кВт. Ведутся ли у нас в России хотя бы предварительные проработки самолётов, которые в будущем могли бы получить подобные гибридные силовые установки? Будут ли у этих ЛА какие-либо принципиальные отличия от существующих сегодня винтомоторных самолётов?

– Освоение технологий ГСУ открывает возможности для создания новых обликов летательных аппаратов. Речь может идти как о классических схемах самолётов, так и о принципиально новой архитектуре летательных аппаратов – мультироторного типа, конвертопланах с вертикальным или ультракоротким взлётом и посадкой и др. Это ещё одна из причин, почему разработка таких силовых установок стала тенденцией развития авиации не только в России, но и во всем мире.

В настоящее время ЦИАМ в кооперации с организациями, входящими в НИЦ «Институт имени Н.Е. Жуковского», реализует научно-исследовательскую работу по формированию обликов и оценке эффективности региональных и ближнемагистральных самолётов с ГСУ, в том числе и на водороде.

– Расскажите, пожалуйста, о программе лётных испытаний экспериментального Як-40 с демонстратором ГСУ. Где они будут проходить и сколько продлятся, что Вы от них ожидаете? Какие цели и задачи стоят перед ЦИАМ?

– Основной комплекс лётных испытаний проводится в Новосибирске в СибНИА им. С.А. Чаплыгина. Этим летом часть взлётно-посадочной полосы была на ремонте, поэтому мы приняли решение совершить перелёт в ЛИИ им. Громова для продолжения части испытаний и участия в МАКС. Сейчас Як-40ЛЛ уже вернулся в Новосибирск и готовится к очередным лётным испытаниям. Они будут включать отработку режимов работы силовой установки на различных высотах и скоростях полёта. Этот этап продлится до начала следующего года.

– А как велась подготовка к первому полёту, какие доработки были выполнены после наземных испытаний в Новосибирске зимой этого года? Когда и как был доставлен Як-40ЛЛ в Жуковский?

– Одной из самых заметных «предполётных» доработок стала замена винта самолёта. Ранее использовался временный 6-лопастной винт с фиксированным шагом. Его установка была предусмотрена только программой наземных испытаний, так как полёты на таком винте невозможны. В настоящий момент на летающую лабораторию установлен 3-лопастной винт изменяемого шага с возможностью флюгирования. Новый винт ГСУ можно было увидеть в действии во время демонстрационного полета на МАКС-2021.

Летающая лаборатория Як-40ЛЛ совершила самостоятельный перелёт из Новосибирска в Жуковский и обратно на двух своих турбореактивных двигателях.

– Что последует в дальнейшем по окончании лётных испытаний? Когда вы планируете перейти от демонстратора гибридной СУ к готовому законченному изделию?

– В настоящий момент разработка находится на стадии научно-исследовательской работы, коммерческий интерес непосредственно со стороны эксплуатантов появится позже. Производство ГСУ с последующей установкой на самолёты – это будущая задача для отечественных конструкторских бюро.

– Можно ли говорить, что с появлением серийных «электросамолётов» с ГСУ винтовую авиацию ожидает ренессанс? Когда, по вашим оценкам, это может произойти?

– Да, это так. На первом этапе мы рассчитываем на то, что технологии ГСУ будут использоваться в малой авиации, самолётах местных воздушных линий, а затем настанет очередь региональных воздушных судов. В более далёкой перспективе возможности использования ГСУ смогут быть реализованы для магистральных самолётов. Будут ли использоваться в этом случае винты, вентиляторы или реактивная тяга – вопрос пока открытый и является темой наших совместных исследований с ЦАГИ.

– Михаил Валерьевич, спасибо за интересное и обстоятельное интервью!

Андрей Величко
для сайта «Авиации России»

1. Подготовка к изучению нового материала:

Жизнь невозможна без использования различных видов энергии.

? Какие виды энергии вы знаете?

Источниками энергии являются различные виды топлива, энергия ветра, солнечная энергия, энергия приливов и отливов.

Поэтому существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Демонстрация: В литературе встречается описание паровой машины английского изобретателя Т. Севери, созданной в 1698 г. и предназначенной для откачивания воды из шахт. Демонстрация модели Т. Севери:


Рисунок 1.


Рисунок 2.

? Преобразование, какой энергии, в какую мы наблюдаем в данном опыте?

Тепловая энергия преобразуется в механическую работу.

Учитель: Мы рассмотрели модель паровой машины. Паровая машина один из видов тепловых двигателей.

Записывает тему урока: Тепловые двигатели. Двигатель внутреннего сгорания.

? Что такое тепловой двигатель?

2. Изучение нового материала:

1) Тепловым двигателем называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.

? какие виды тепловых двигателей вы знаете?

В процессе совершения работы часть внутренней энергии газа превращается в механическую энергию движущихся частей двигателя.

Совершая работу, тепловой двигатель использует лишь некоторую часть той энергии, которая выделяется при сгорании топлива.

? Можно ли считать ружье тепловым двигателем?

При сгорании внутренняя энергия пороха превращается в механическую энергию.

Читать еще:  Уходит масло в двигателе ваз 2109 причины

2) Любой двигатель характеризуется величиной КПД.

ή =·100%

где Q – количество теплоты, полученное в результате сгорания топлива, Дж;
А – работа, совершенная двигателем, Дж.

  1. Один из учеников при решении получил ответ, что КПД теплового двигателя равен 200%. Правильно ли ученик решил задачу?
  2. КПД теплового двигателя 45%. Что означает это число?
    (45% идет на полезную работу, а 55% тратится впустую на обогрев атмосферы, двигателя и т.д.).

3) Если проследить историю развития тепловых машин, современные машины имеют достаточно высокий КПД.

Заглянем в историю.

Первые тепловые двигатели были построены в конце 18 века – это были тепловые машины.

Сообщение учащихся: «Первые паровые машины. Паровые машины Джеймса Уатта».

Учитель: Пропагандируя использование паровых машин, Джеймс Уатт тем не менее был противником их использования на транспорте. Но прогресс нельзя остановить. В 1770 году Ж. Кюньо построил первую самодвижущуюся тележку …

Сообщение учащихся: «Изобретение автомобиля».

Учитель: Следующий этап в развитии техники был связан с изобретением …

Загадка: Железные избушки держатся друг за дружку. Одна с трубой тянет всех за собой? (Поезд).

Сообщение учащихся: «Изобретение паровоза».

Учитель: В современных тепловозах и автомобилях применяются ДВС. Первый ДВС изобрел француз Э. Ленуар, КПД=3%. Спустя 18 лет немецкий изобретатель Н. Отто создал ДВС, который работал по четырехтактной схеме.

4) ДВС.

? Какой двигатель называют двигателем внутреннего сгорания?

Учитель: Свое название он получил из-за того, что топливо в нем сжигалось не снаружи, а внутри цилиндра двигателя.

Сообщение учащихся: видео зарисовка учащихся – современные ДВС.

Учитель: Теперь познакомимся с устройством и принципом действия ДВС (используя модель или видеофрагмент).

? Из каких основных частей состоит простейший ДВС?
? Как называется каждый такт ДВС?
? Опишите принцип действия четырехтактного ДВС (используя модель)?


Рисунок 3.

5) Учитель: при использовании тепловых машин остро встает вопрос загрязнения окружающей среды. При сжигании топлива в атмосферу попадает очень много вредных выбросов. К ним можно отнести СО2 , СО, различные виды сернистых соединений, а так соединения тяжелых металлов.

Сообщение учащихся: Практическая работа по определению уровня загрязнения в районе школы.

Учитель: Большую часть механической и электрической энергии вырабатывают тепловые двигатели. Пока равноценной замены им нет. В то же время тепловые двигатели оказывают отрицательное влияние на окружающую среду и условия существования человека на Земле.

Что бы вы предложили для решения проблемы загрязнения окружающей среды тепловыми двигателями?

3. Домашнее задание.

Написать сочинение «Тепловые двигатели будущего».

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q 1 . Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q 2 .

Исходя из определения, рассчитаем величину КПД:

η= A / Q 1 . Учтем, что А = Q 1 — Q 2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q 1 — Q 2)/ Q 1 = 1 — Q 2 / Q 1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

Двигатель квантового сгорания

Как справиться с энтропией

Люди научились строить очень мощные двигатели внутреннего сгорания, но не научились главному — существенному повышению их КПД. Предел на этом пути ставит второй закон термодинамики, утверждающий, что энтропия системы неизбежно растет. Но нельзя ли преодолеть этот предел с помощью квантовой физики? Оказалось, что можно, но для этого необходимо было понять, что энтропия субъективна, а тепло и работа — далеко не единственно возможные формы энергии. Подробнее о том, что такое квантовые двигатели, как они устроены и на что способны, читайте в нашем материале.

За 300 лет развития технологии расчета, проектирования и конструирования двигателей проблема создания машины с большим коэффициентом полезного действия (КПД) так и не была решена, хоть и является критичной для многих областей науки и техники.

Квантовая физика, открытая в начале XX века, преподнесла нам уже немало сюрпризов в мире технологий: атомная теория, полупроводники, лазеры и, наконец, квантовые компьютеры. Эти открытия основываются на необычных свойствах субатомных частиц, а именно, на квантовых корреляциях между ними — сугубо квантовом способе обмена информацией.

И кажется, квантовая физика готова удивить нас еще раз: годы развития квантовой термодинамики позволили физикам показать, что квантовые тепловые двигатели могут иметь высокую эффективность на малых масштабах, недоступную для классических машин.

Давайте разберемся, что такое квантовая термодинамика, как работают тепловые машины, какие улучшения дает квантовая физика и что необходимо сделать для создания эффективного двигателя будущего.

Классические тепловые двигатели

В своей книге 1824 года «Размышления о движущей силе огня» 28-летний французский инженер Сади Карно придумал, как паровые двигатели могут эффективно преобразовывать тепло в работу, заставляющую двигаться поршень или крутиться колесо.

К удивлению Карно, эффективность идеального двигателя зависела только от разницы температур между источником тепла двигателя (нагревателем, как правило — огнем) и теплоотводом (холодильником, как правило — окружающим воздухом).

Карно понял, что работа — это побочный продукт естественного перехода тепла от горячего тела к холодному.

Схема работы теплового двигателя

В тепловых двигателях используется следующий цикл. Тепло Q1 подводится из нагревателя с температурой t1 к рабочему телу, часть тепла Q2 отводится к холодильнику с температурой t2, t1 > t2.

Работа, произведенная тепловым двигателем, равна разности между подведенным и отведенным теплом: A = Q1Q2, а КПД η будет равен η = A/Q1.

Карно показал, что КПД любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по его циклу с теми же самыми температурами нагревателя и холодильника ηCarnot = (t1t2)/t1. Создание эффективной тепловой машины — это максимальное приближение реального КПД η к идеальному ηCarnot.

Сади Карно умер от холеры восемь лет спустя — прежде, чем смог увидеть, как уже в XIX веке его формула эффективности превратилась в теорию классической термодинамики — набор универсальных законов, связывающих температуру, тепло, работу, энергию и энтропию.

Классическая термодинамика описывает статистические свойства систем, сводя микропараметры, такие как положения и скорости частиц, к макропараметрам: температуре, давлению и объему. Законы термодинамики оказались применимы не только к паровым машинам, но и к Солнцу, черным дырам, живым существам и всей Вселенной.

Это теория настолько простая и общая, что Альберт Эйнштейн считал, что она «никогда не будет свергнута». Однако с самого начала термодинамика занимала исключительно странное положение среди других теорий мироздания.

«Если бы физические теории были людьми, термодинамика была бы деревенской ведьмой, — писала несколько лет назад физик Лидия дель Рио. — Другие теории находят ее странной, отличной от остальных, но все приходят к ней за советом и никто не осмеливается ей противоречить».

Термодинамика никогда не претендовала на то, чтобы быть универсальным методом анализа окружающего мира, скорее, она путь к эффективному использованию этого мира.

Термодинамика рассказывает нам, как максимально использовать ресурсы, такие как горячий газ или намагниченный металл, для достижения конкретных целей, будь то движение поезда или форматирование жесткого диска.

Ее универсальность происходит от того, что она не пытается понять микроскопические детали отдельных систем, а только заботится о том, чтобы определить, какие операции легко реализовать в этих системах, а какие трудно.

Такой подход может показаться странным для ученых, но им активно пользуются в физике, информатике, экономике, математике и много где еще.

Одна из самых странных особенностей теории — это субъективность ее правил. К примеру, газ, состоящий из частиц, в среднем имеющих одинаковую температуру, при ближайшем рассмотрении имеет микроскопические температурные различия.

В последние годы появилось революционное понимание термодинамики, объясняющее эту субъективность с помощью квантовой теории информации, которая описывает распространение информации через квантовые системы.

Точно так же, как термодинамика первоначально выросла из попыток улучшить паровые двигатели, современная термодинамика описывает работу уже квантовых машин — управляемых наночастиц.

Читать еще:  Что если масло в двигателе немного выше уровня

Для корректного описания мы вынуждены распространить термодинамику на квантовую область, где такие понятия, как температура и работа, теряют свое обычное значение, а классические законы механики перестают работать.

Квантовая термодинамика

Зарождение квантовой термодинамики

В письме от 1867 года своему коллеге, шотландцу Питеру Тейту, знаменитый физик Джеймс Кларк Максвелл сформулировал знаменитый парадокс, намекающий на связь между термодинамикой и информацией.

Парадокс касался второго закона термодинамики — правила, согласно которому энтропия всегда возрастает. Как позже заметил сэр Артур Эддингтон, это правило «занимает главенствующее положение среди законов природы».

Согласно второму закону, энергия становится все более неупорядоченной и менее полезной, поскольку она распространяется от горячих тел к холодным и различия в температуре уменьшаются.

А как мы помним из открытия Карно, для совершения полезной работы требуются горячее и холодное тело. Огонь гаснет, чашки с утренним кофе остывают, а Вселенная устремляется к состоянию равномерной температуры, известной как тепловая смерть Вселенной.

Великий австрийский физик Людвиг Больцман показал, что увеличение энтропии является следствием законов обычной математической статистики: существует гораздо больше способов для равномерного распределения энергии между частицами, чем для локальной ее концентрации. Когда частицы движутся, они естественным образом стремятся к состояниям с более высокой энтропией.

Но в письме Максвелла описывался мысленный эксперимент, в котором некое просветленное существо — позднее названное демоном Максвелла — использует свои знания для снижения энтропии и нарушения второго закона.

Всемогущий демон знает положение и скорость каждой молекулы в контейнере с газом. Разделяя контейнер на две половинки и открывая и закрывая маленькую дверцу между двумя камерами, демон пропускает только быстрые молекулы в одну сторону и только медленные — в другую.

Действия демона делят газ на горячий и холодный, концентрируя его энергию и снижая общую энтропию. Некогда бесполезный газ с некоторой средней температурой теперь можно пустить в ход в тепловой машине.

Долгие годы Максвелл и другие задавались вопросом, как закон природы может зависеть от знания или незнания положения и скорости молекул. Если второй закон термодинамики субъективно зависит от этой информации, то как он может быть абсолютной истиной?

Связь термодинамики с информацией

Столетие спустя американский физик Чарльз Беннетт, опираясь на работы Лео Силарда и Рольфа Ландауэра, разрешил парадокс, формально связав термодинамику с наукой об информации. Беннетт утверждал, что знания демона хранятся в его памяти, а память должна быть очищена, на что требуется работа.

В 1961 году Ландауэр подсчитал, что при комнатной температуре компьютеру требуется не менее 2,9 × 10 -21 джоулей, чтобы стереть один бит хранимой информации. Другими словами, когда демон разделяет горячие и холодные молекулы, снижая энтропию газа, его сознание потребляет энергию, и общая энтропия системы газ + демон возрастает, не нарушая второй закон термодинамики.

Результаты исследования показали, что информация является физической величиной — чем больше у вас информации, тем больше работы вы можете извлечь. Демон Максвелла создает работу из газа с одной температурой, потому что у него гораздо больше информации, чем у обычного наблюдателя.

Потребовались еще полвека и расцвет квантовой теории информации — области, зародившейся в погоне за квантовым компьютером, чтобы физики подробно изучили поразительные следствия идеи Беннетта.

В течение последнего десятилетия физики предположили, что энергия распространяется от горячих объектов к холодным из-за определенного способа распространения информации между частицами.

Согласно квантовой теории, физические свойства частиц вероятностны и частицы могут находиться в суперпозиции состояний. Когда они взаимодействуют, то запутываются, комбинируя вместе распределения вероятностей, описывающих их состояния.

Центральным положением квантовой теории является утверждение, что информация никогда не теряется, то есть настоящее состояние Вселенной сохраняет всю информацию о прошлом. Однако со временем, когда частицы взаимодействуют и все больше запутываются, информация об их индивидуальных состояниях перемешивается и распределяется между все большим количеством частиц.

Чашка кофе охлаждается до комнатной температуры, потому что при столкновении молекул кофе с молекулами воздуха информация, кодирующая кофейную энергию, просачивается наружу, передается окружающему воздуху и теряется в нем.

Однако понимание энтропии как субъективной меры позволяет Вселенной в целом развиваться без потери информации. Даже когда энтропия частей Вселенной, например частиц газа, кофе, читателей N + 1, растет по мере того, как их квантовая информация теряется во Вселенной, глобальная энтропия Вселенной всегда остается нулевой.

15 лет назад люди думали об энтропии как о свойстве термодинамической системы. Сейчас же мы считаем, что энтропия — это не свойство системы, а свойство наблюдателя, описывающего систему.

Идея о том, что энергия имеет две формы: бесполезное тепло (о котором мы не знаем ничего) и полезную работу (о которой мы знаем почти все), имела смысл для паровых двигателей.

На самом деле между ними существует целый спектр форм — энергия, о которой у нас есть лишь частичная информация. При таком подходе энтропия и термодинамика становятся гораздо менее загадочными.

Ренато Реннер,
профессор университета ETH, Цюрих

Квантовая тепловые двигатели

Как же теперь, используя более глубокое понимание квантовой термодинамики, построить тепловую машину?

В 2012 году был учрежден технологический Европейский исследовательский центр, посвященный квантовой термодинамике, где в настоящее время работают более 300 ученых и инженеров.

Команда центра надеется исследовать законы, управляющие квантовыми переходами в квантовых двигателях и холодильниках, которые когда-нибудь смогут охлаждать компьютеры или использоваться в солнечных панелях, биоинженерии и других приложениях.

Уже сейчас исследователи намного лучше, чем раньше, понимают, на что способны квантовые двигатели.

Тепловой двигатель — это устройство, использующее квантовое рабочее тело и два резервуара при разных температурах (нагреватель и холодильник) для извлечения работы. Работа — это передача энергии от двигателя к какому-то внешнему механизму без изменения энтропии механизма.

С другой стороны, тепло — это обмен энергией между рабочем телом и резервуаром, изменяющий энтропию резервуара. При слабой связи между резервуаром и рабочим телом тепло связано с температурой и может быть выражено как dQ = TdS, где dS — это изменение энтропии резервуaра.

В элементарном квантовом тепловом двигателе рабочее тело состоит из одной частицы. Такой двигатель удовлетворяют второму закону и поэтому также ограничен пределом эффективности Карно.

Когда рабочее тело приводится в контакт с резервуаром, то в рабочем теле изменяется заселенность энергетических уровней. Определяющим свойством резервуара является его способность довести рабочее тело до заданной температуры независимо от начального состояния тела.

В данном случае температура является параметром квантового состояния системы, а не макропараметром, как в классической термодинамике: мы можем говорить о температуре как о заселенности энергетических уровней.

В процессе обмена энергией с резервуаром тело обменивается еще и энтропией, поэтому энергетический обмен на этой стадии рассматривается как передача тепла.

Для примера рассмотрим квантовый цикл Отто, в котором рабочим телом будет выступать двухуровневая система. В такой системе имеются два энергетических уровня, каждый из которых может быть заселен; пусть энергия основного уровня E1, а возбужденного E2. Цикл Отто состоит из 4 стадий:

I. Расстояние между уровнями E1 и E2 увеличивается и становится Δ1 = E1E2.

II. Происходит контакт с нагревателем, система нагревается, то есть верхний энергетический уровень заселяется и изменяется энтропия рабочего тела. Это взаимодействия продолжается время τ1.

III. Происходит сжатие между уровнями E1 и E2, то есть происходит работа над системой, теперь расстояния между уровнями Δ2 = E1E2.

IV. Тело приводится в контакт с холодильником на время τ2, что дает ему возможность срелаксировать, опустошить верхний уровень. Теперь нижний уровень оказывается полностью заселен.

Здесь мы можем ничего не говорить о температуре рабочего тела, имеют значения лишь температуры нагревателя и холодильника. Совершенную работу можно записать как:

где p0(1) — вероятность, что рабочее тело находилось в основном (возбужденном) состоянии. КПД данного квантового четырехтактного двигателя η = 1 − Δ1/Δ2.

Цикл Отто на квантовой двухуровневой системе

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector