Promlebedka.ru

Авто ДРайв
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выключил зажигание а двигатель еще работает мерседес

правильно Анатолич написал ,гдето красный провод еб——я с какмнибуть проводом ,два красных провода идут со стартера на мозги ,вот их и смотри ка следует ,или попробуй отсоедини их от стартера и кинь поралельный провод ,если будет ок ,то смотри красные провада MR это блог управления двигателем т.е. мозги на моторе

а если с кнопки не заводится ,то датчик нетрали ,на коробке или залип или обрыв , у меня с кнопки когда не заводился ,то FR 1723 писал ,окислевши провод был

После выключения зажигания двигатель глохнет через 3-5 секун

Модераторы: ЖеХа, Genchik

После выключения зажигания глохнет через 3-5 секунды

#1 Сообщение PROHOR » 10 май 2012, 11:53

Re: После выключения зажигания глохнет через 3-5 секунды

#2 Сообщение MOLFAR » 10 май 2012, 12:09

Re: После выключения зажигания глохнет через 3-5 секунды

#3 Сообщение Vadik.exb » 10 май 2012, 12:12

Я тут http://www.drive2.ru/users/vadik638/
Разбераю ML 163 2.7 CDI c маленьким пробегом звоните торгуйтесь

«‘“Делай добро и оно тебе вернется” – вопрос когда и в каком виде, обычно догоняют и еще добра по ушам навешивают или всем рассказывают как хреново ты им помогаешь, должен был больше. »»

Re: После выключения зажигания двигатель глохнет через 3-5 с

#4 Сообщение muxaster » 10 май 2012, 12:52

перегрев — двигатель детонирует

жми газ в пол и заглохнет быстрее

разбирайся с охлаждением.
какая температура ОЖ по датчику?
какие у тебя свечи? марка и производитель?

Re: После выключения зажигания глохнет через 3-5 секунды

#5 Сообщение muxaster » 10 май 2012, 12:56

о! клон темы.
в другую уже ответил.

повторюсь т.к. одну из тем снесут точно

причина перегрев и двигатель детонирует
жми газ в пол и заглохнет быстрее
правильное замечание по свечкам

какая температура ОЖ по датчику?

Re: После выключения зажигания двигатель глохнет через 3-5 с

#6 Сообщение Yurik » 10 май 2012, 13:24

Re: После выключения зажигания двигатель глохнет через 3-5 с

#7 Сообщение PROHOR » 10 май 2012, 13:59

Re: После выключения зажигания двигатель глохнет через 3-5 с

#8 Сообщение Yurik » 10 май 2012, 14:07

Re: После выключения зажигания двигатель глохнет через 3-5 с

#9 Сообщение PROHOR » 10 май 2012, 14:20

Re: После выключения зажигания двигатель глохнет через 3-5 с

#10 Сообщение muxaster » 10 май 2012, 23:01

2е-е карбюратор не регулируется
то есть регулируется, но после этого нормально не работает

вряд ли проблема в карбюраторе, но если в нем, то может не работает отсечка топлива
лучший вариант снять и аккуратно и тщательно все промыть

Читать еще:  Ваз 2114 расход топлива при холостых оборотах двигателя

Re: После выключения зажигания двигатель глохнет через 3-5 с

#11 Сообщение maks odessa » 11 май 2012, 01:11

Re: После выключения зажигания двигатель глохнет через 3-5 с

#12 Сообщение asvodessa » 11 май 2012, 01:18

Самому писать лень столько,поэтому процитирую —

*Калильное зажигание — это процесс воспламенения топливной смеси поверхностью какой-либо чрезмерно нагретой детали камеры сгорания.

При калильном зажигании сгорание смеси происходит как обычно, однако несколько преждевременно и равносильно самопроизвольному увеличению угла опережения зажигания по отношению к оптимальному значению. В таком режиме мощность двигателя внезапно и резко падает, и если не снизить нагрузку на двигатель — перегретые детали будут повреждены.

Теоретически, разделяют два случая калильного зажигания — до возникновения искры между электродами свечи зажигания или после этого.

Реальную опасность для двигателя представляет только первый случай.

Наиболее типичной причиной возникновения калильного зажигания является перегрев свечей зажигания, который может возникнуть в случае использования слишком «горячих» свечей зажигания.

Кроме этого, источником калильного зажигания могут быть выпускной клапан или поршень. Здесь следует отметить о том, что температура, при которой может произойти калильное зажигание от перегретого клапана или поршня — меньше, чем у свечи, так как воспламеняющая способность зависит не только от величины нагрева, но и от величины площади поверхности перегретой детали.

Также, здесь следует отметить, что перегрев выпускного клапана может быть спровоцирован неправильной регулировкой газораспределительного механизма, в результате которой выпускной клапан зажат настолько, что не в состоянии герметично закрывать отверстие в головке двигателя для выпуска выхлопных газов из камеры сгорания.

Основные причины возникновения калильного зажигания является чрезмерно раннее зажигание и эксплуатация двигателя в течение продолжительного времени в режиме максимальной мощности, на максимальных оборотах (недостаточное охлаждение блока цилиндров и его головки), когда полностью открыта дроссельная заслонка (обогащенная топливная смесь).*

В общем,для начала поменять свечи на правильные.Ибо таки да,это калильное зажигание и оно может быть даже из-за нагара на свечах,ибо меняется их тепловой режим.

Модели, конструкция и характеристика коммутаторов ВАЗ

Используемые на автомобилях ВАЗ электронные коммутаторы делятся на две большие группы:

  • Транзисторные;
  • На основе специализированных микросхем.


Устройство современного коммутатора ВАЗ


Типовая схема подключения электронного коммутатора

Наиболее просто устроены транзисторные коммутаторы, которые были исторически первыми (они пришли на смену контактно-транзисторных устройств, широко использовавшихся на автомобилях ВАЗ «Классика»). В сущности, это электронный ключ, дополненный усилителем сигнала от датчика импульсов, а также элементами защиты и температурной компенсации. Ключ построен на одном мощном транзисторе, который управляется одним или двумя транзисторами, усиливающими и изменяющими сигнал от датчика Холла. В качестве элементов защиты могут выступать включенные в схему стабилитроны (предотвращают скачки напряжения), тиристоры (отключающие коммутатор или его отдельные элементы в аварийных режимах) и другие детали. А элементы температурной компенсации (цепочки резисторов и конденсаторов) обеспечивают постоянство режимов работы полупроводниковых приборов во всем допустимом температурном диапазоне.

Читать еще:  Устройство работа системы охлаждения двигателя автомобиля камаз

Работает транзисторный коммутатор довольно просто. Пока сигнал от датчика Холла отсутствует, электронный ключ открыт и по первичной обмотке катушки течет постоянный ток — в данный момент во вторичной обмотке никакого тока нет. Когда от датчика поступает сигнал, ключ закрывается, прерывая ток в первичной обмотке. Из-за наличия индуктивности ток в первичной обмотке падает до нулевого значения не мгновенно, а в течение какого-то периода (доли секунды), возникает явление электромагнитной индукции — вследствие этого эффекта во вторичной обмотке тоже возникает переменный ток высокого напряжения. Данный ток через трамблер поступает на свечу зажигания, где происходит искрообразование и воспламенение горючей смеси. В последующий момент через первичную обмотку вновь протекает постоянный ток, поэтому во вторичной обмотке ток вновь исчезает. Затем описанные процессы повторяются вновь до 200-300 раз в секунду.

Транзисторная схемотехника заложена в коммутатор модели 76.3734. Это устройство отличается простой и надежностью, однако у него есть ряд недостатков. Например, с ростом частоты вращения коленчатого вала существенно снижается ток во вторичной обмотке, также коммутатор имеет ограниченный функционал и не может обеспечить эффективную работу системы зажигания на всех режимах.

Этих недостатков лишены электронные коммутатору на основе специализированных микросхем. В таком коммутаторе тоже используется электронный ключ на мощном транзисторе, однако управление ключом возложено на микросхему, что значительно расширяет функции и возможности всего устройства. В частности, в коммутаторах с микросхемами реализованы функции регулирования времени накопления энергии в катушке, безыскровой отсечки (ограничения искрообразования при включенном зажигании, но остановленном двигателе), различных уровней защиты и другие. Благодаря возможности регулирования времени накопления энергии, коммутаторы на микросхемах обеспечивают стабильное искрообразование во всем диапазоне оборотов коленчатого вала, чем и обусловлено их широчайшее распространение.

На микросхемах построены коммутаторы моделей 036.3734, 42.3734, 72.3734 (все на отечественной элементной базе) и их модификации, 98.3734, немецкий HUCO.13 8090 и другие (на зарубежных микросхемах).

Электронные коммутаторы делятся еще на два типа по количество каналов управления:

  • Одноканальные;
  • Двухканальные.

К одноканальным относятся все описанные выше устройства. Они предназначены для работы с одной катушкой зажигания, поэтому в системах с двумя катушками приходится использовать два одинаковых коммутатора, работающих с одним импульсным датчиком. Двухканальные коммутаторы — специализированные устройства для управления сразу двумя катушками зажигания. К устройствам этого типа относят коммутатор модели 133.3774 некоторых модификаций.

Читать еще:  Что будет если часто менять масло в двигателе

Конструктивно все коммутаторы ВАЗ выполнены в виде компактных пластиковых блоков с интегрированными алюминиевыми теплоотводами (они обеспечивают охлаждение мощного транзистора в процессе работы системы зажигания). В теплоотводах выполнены проушины или отверстия для монтажных винтов, с их помощью коммутатор монтируется на кронштейн или непосредственно на кузова автомобиля. Подключение коммутатора к электросистеме осуществляется с помощью одного стандартного разъема с контактами ножевого типа, расположенного на стенке корпуса.

К основным характеристикам электронных коммутаторов системы зажигания можно отнести:

  • Ток коммутации;
  • Предельные частоты вращения коленчатого вала, при которых обеспечивается бесперебойное искрообразование;
  • Допустимое и максимальное напряжения питания;
  • Время безыскровой отсечки.

У современных коммутаторов для автомобилей ВАЗ ток коммутации лежит в пределах 7-8 А, рабочие напряжения — от 6 до 18 В, максимальное напряжение — до 25-30 В в течение пяти минут, предельные частоты вращения коленвала — от 20 до 7000 об/мин, а время безыскровой отсечки — не более 2-3 секунд.

Из опыта профессиональных дальнобойщиков

Интернет полон всевозможных поучалок и лафхаков для владельцев дизельных авто и буквально кишит различными «советами бывалых».

  • и рекомендации заменить штатный заводской насос подкачки более производительным;
  • и «инсталлировать» в подающую магистраль банальную резиновую грушу;
  • и систематически регулировать и чистить резьбу сливной пробки топливного бака (и саму собственно пробку) от грязи и коррозии;
  • и, цитата: «…зимой по возможности регулярно поддерживать топливный бак полным, поскольку в полупустом баке образуются конденсат и воздушные пробки, проникающие затем в магистраль»;
  • и, ещё цитата: «…заправляться только на проверенных и/или брендовых АЗС»…

Но вся беда заключается в том, что все приведенные советы, они — для всех и для всего, а конкретно вашему автомобилю (и конкретно вашей дизельной системе питания) нужна своя собственная уникальная процедура мер и уникальный порядок их выполнения.

Одной из наиболее распространенных (и очевидных) причин завоздушивания топливной системы случается… банальная невнимательность и наша надежда «на авось» — авось дотянем до следующей заправки. Но — вот, не дотянули, машина заглохла. Мы налили солярки в бак из ведра, а двигатель не заводится. А всё потому, что:

  • одному дизельному мотору будет достаточно… просто включить-выключить зажигание несколько раз подряд, тогда штатный насос «дотянет» давление в системе до (или почти до) нормы, и двигатель заведется;
  • другому потребуется буксир и несколько десятков-сотен метров чистого асфальта (а то и вовсе метр-полтора);
  • а третьему – только на автосервис.

Выбрать ближайший к вам профильный автосервис и найти «правильного» дизелиста вам поможет сайт Аutоbооkіng.

автомобильный инженер, журналист,

редактор автомобильной программы «Мотор-ТВ»

Нужен ремонт ТНВД? Не откладывайте на потом! Найдите СТО прямо сейчас, воспользовавшись формой поиска ниже:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector