Promlebedka.ru

Авто ДРайв
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Audi A2 1

Audi A2 1.4 TDI 55 kw › Бортжурнал › Автомобили из алюминия, их не так уж мало

Вчера на форуме по А2 решил поднять тему по поводу автомобилей из алюминия. Выяснилось, что их существует в природе не так уж мало (правда по количеству выпущенных серийных авто все равно А2 будет лидером). К сожалению, в основном алюминий привлекает к себе внимание создателей спорткаров. Итак, перечень, все еще не претендующий на полноту:

Artega GT (кокпит, двери и передняя часть из алюминия, крыша и крепеж двигателя — стальные трубки, части каркаса — полиуретан)
Audi ASF (прототип Audi A8 D2)
Audi A2 (ASF=Audi Space Frame)
Audi A8 (ASF)
Audi R8 (ASF)
Audi TT (частично)
Aston Martin DB9
BMW 5er (E60, частично, GRAV)
BMW 6er (E63, частично, GRAV)
Ferrari 612 Scaglietti
Ferrari 360 Modena
Ferrari F430
Honda NSX
Jaguar XJ
Jaguar XKR
Lamborghini Gallardo (ASF)
Land Rover Defender (производится с 1948 года, рама — оцинкованное железо, навесные панели — алюминий )
Lotus Elise
Melkus RS2000
Mercedes SLS AMG
Morgan Aero 8
Opel Speedster
Spyker C8
Tesla Roadster
VW Lupo 3L (частично)

Становление мастера

Сколь­ко себя пом­нит, Кри­сто­фер все­гда увле­кал­ся авто­мо­би­ля­ми, посто­ян­но что-то кон­стру­и­ро­вал и стро­ил. С под­рост­ко­во­го воз­рас­та Крис под­ра­ба­ты­вал стро­и­те­лем и хоро­шо изу­чил кон­струк­тив­ные осо­бен­но­сти кар­кас­ных домов. Потом он начал зани­мать­ся ремон­том авто­мо­би­лей и их про­да­жей. В 14 лет Крис купил пикап GMC 1951 года, что­бы отре­мон­ти­ро­вать и про­дать. Поло­ви­ну сто­и­мо­сти он нако­пил сам, а поло­ви­ну опла­тил его отец. Потом он начал поку­пать ста­рые VW Bug и Karmann Ghias. К 18 годам Крис Рун­ге при­об­рёл свой пер­вый Porsche 911 за более низ­кую сто­и­мость, под восстановление.

В 2011 году Крис нашёл по объ­яв­ле­нию Porsche 912 1967 года в Южной Дако­те. Вла­де­ли­цей была вдо­ва. Её муж был инже­не­ром, про­фес­си­о­наль­ным фор­мов­щи­ком метал­ла. Маши­на была зава­ле­на мно­же­ством инстру­мен­тов и зап­ча­стей. Сре­ди инстру­мен­тов были сва­роч­ный аппа­рат, ста­нок Англий­ское коле­со, раз­лич­ные молот­ки и дру­гие руч­ные инстру­мен­ты, пред­на­зна­чен­ные для фор­мов­ки метал­ла. Крис дав­но хотел попро­бо­вать фор­мов­ку листо­во­го метал­ла, но у него не было спе­ци­аль­но­го обо­ру­до­ва­ния. Он дого­во­рил­ся с хозяй­кой, что купит маши­ну вме­сте со все­ми инстру­мен­та­ми и запчастями.

Так появи­лось жела­ние начать делать свой соб­ствен­ный авто­мо­биль. У Кри­са было пони­ма­ние того, что он хочет сде­лать, но не было нуж­ных зна­ний и умений.

С того само­го момен­та, всё сво­бод­ное вре­мя Крис про­во­дил в мастер­ской. Он пытал­ся разо­брать­ся, как фор­му­ет­ся алю­ми­ний, изу­чая прин­цип рабо­ты раз­лич­ных инстру­мен­тов. Крис купил кни­ги по фор­мов­ке метал­ла, дизай­ну и изго­тов­ле­нию кузо­вов спор­тив­ных авто­мо­би­лей. Он научил­ся пони­мать свой­ства и дви­же­ние метал­ла во вре­мя фор­мов­ки. Он обна­ру­жил, что в неко­то­рых кни­гах не пра­виль­но опи­са­ны про­цес­сы фор­мов­ки. Мето­дом проб и оши­бок Крис до все­го дошёл сам. Свар­ка алю­ми­ния была одной из самых слож­ных задач для него. У него был сва­роч­ный аппа­рат MIG , кото­рым доста­точ­но слож­но делать каче­ствен­ный шов на алю­ми­ни­е­вых панелях.

Первую маши­ну Крис сде­лал за 2200 часов (2 года). Его друг пред­ло­жил ему выста­вить само­дель­ный авто­мо­биль в Мин­не­со­те, на мест­ной авто­мо­биль­ной выстав­ке. Крис был удив­лён повы­шен­ным инте­ре­сом людей к его авто­мо­би­лю, изго­тов­лен­но­му пол­но­стью вруч­ную. Отзы­вы были раз­ны­ми, кто-то был вос­хи­щён, кто-то кри­ти­ко­вал, но это опре­де­лён­но вызы­ва­ло бурю эмо­ций. В ито­ге, у Кри­са сра­зу появил­ся заказ­чик. Одни из посе­ти­те­лей выстав­ки попро­сил сде­лать для него похо­жий автомобиль.

Кри­су все­гда нра­ви­лись авто­мо­би­ли Porsche. Маши­ны Porsche сна­ча­ла понра­ви­лись Кри­су фор­мой кузо­ва, потом он спол­на оце­нил ходо­вые каче­ства авто­мо­би­лей этой мар­ки. Он изу­чил исто­рию ком­па­нии. Ему понра­вил­ся немец­кий под­ход к дизай­ну и дотош­ность к тех­ни­че­ским каче­ствам. Всё это резо­ни­ро­ва­ло с его пони­ма­ни­ем авто­мо­би­ле­стро­е­ния. Впо­след­ствии, он исполь­зо­вал боль­шин­ство дета­лей для созда­ния сво­их авто­мо­би­лей от Porsche.

Одна­жды Кри­сто­фе­ру посчаст­ли­ви­лось позна­ко­мить­ся с опыт­ным масте­ром, кото­рый изго­тав­ли­ва­ет неболь­шие само­лё­ты. В ито­ге, он про­ра­бо­тал с ним 2 года. Это был насто­я­щий про­фес­си­о­нал сво­е­го дела. Он научил Кри­са цен­ным тех­ни­кам и кон­цеп­ци­ям фор­мов­ки метал­ла и дизайна.

Как рас­ска­зал Кри­сто­фер в одном из интер­вью, сей­час он на любую маши­ну смот­рит, слов­но ска­ни­руя её и дос­ко­наль­но пони­мая кон­струк­цию пане­лей, каж­дый изгиб.

Крылатый наступает: почему кузова машин будущего будут алюминиевыми и чем это чревато

Электромобиль с автопилотом – примерно так можно вкратце описать типичную машину условного 2030 года. Если не произойдет каких-то глобальных сломов трендов, то так оно и будет. Но с одной оговоркой – этот электромобиль, скорее всего, будет еще и алюминиевым. В этой статье вспомним все плюсы и минусы кузовов из крылатого металла и отследим, как он постепенно вытесняет сталь из автопромышленности.

Немного из истории

И спользование алюминия в производстве кузова кажется столь соблазнительной и новой технологией, что забывается, что родом она из первой половины двадцатого века. Как конструктивный материал для авто его опробовали сразу, как только начали отказываться от дерева и кожи, причем именно с деревом он оказался настолько хорошо совместим, что на автомобилях Morgan подобная технология используется до сих пор. Вот только большинство компаний, которые в тридцатые годы успели изготовить немало автомобилей с широким использованием алюминиевых деталей, в дальнейшем от легкого металла отказались. И причиной стал не только дефицит этого материала в годы Второй мировой. Планам фантастов-футуристов о широком использовании алюминия в конструкции машин не суждено было сбыться. Во всяком случае, до нынешнего момента, когда что-то стало меняться.

Алюминий в металлической форме известен не так уж давно – его вывели только в конце XIX века, и он сразу стал цениться весьма высоко. И вовсе не из-за своей редкости, просто до открытия электролитического метода восстановления производство обходилось баснословно дорого, алюминий был дороже золота и платины. Недаром весы, подаренные Менделееву после открытия периодического закона, содержали немало алюминиевых деталей, на тот момент это был поистине королевский подарок. С 1855 по 1890 годы изготовили всего 200 тонн материала по методу Анри Этьена Сент-Клер Девиля, заключающемся в вытеснении алюминия металлическим натрием.

Читать еще:  Реалистичная автомобильная реплика Бэтмобиля из фильма “Бэтмен: начало”

Уже к 1890 году цена упала в 30 раз, а к началу Первой мировой – более чем в сотню. А после тридцатых годов постоянно сохраняла примерный паритет с ценами на стальной прокат, будучи дороже в 3-4 раза. Дефицит тех или иных материалов периодически изменял это соотношение на небольшой срок, но тем не менее в среднем тонна алюминия всегда обходится минимум в три раза дороже обычной стали.

«Крылатым» алюминий называют за сочетание малой массы, прочности и доступности. Этот металл заметно легче стали, на кубометр приходится примерно 2 700 кг против 7 800 кг для типичных сортов стали. Но и прочность ниже, для распространенных сортов стали и алюминия разница примерно в полтора-два раза что по текучести, что по растяжению. Если о конкретных цифрах, то прочность алюминиевого сплава АМг3 – 120/230 Мпа, низкоуглеродистой стали марки 2C10 – 175/315, а вот высокопрочная сталь HC260BD – это уже 240/450 Мпа.

В итоге конструкции из алюминия имеют все шансы быть заметно легче, минимум на треть, но в отдельных случаях превосходство в массе деталей может быть больше, ведь алюминиевые детали имеют более высокую жесткость и заметно более технологичны в изготовлении. Для авиации это сущий подарок, ведь более прочные титановые сплавы куда дороже, и массовое производство попросту недоступно, а магниевые сплавы отличаются высокой коррозийной активностью и повышенной пожароопасностью.

Практика использования на земле

В массовом сознании алюминиевые кузова в основном ассоциируются с машинами марки Audi, хотя первая A8 в кузове D2 появилась лишь в 1994 году. Это была одна из первых крупносерийных цельноалюминиевых машин, хотя изрядная доля крылатого металла была фирменной «фишкой» таких марок, как Land Rover и Aston Martin на протяжении десятков лет, не говоря уже о уже упомянутом Morgan, с его алюминием на деревянном каркасе. Все же реклама творит чудеса.

В первую очередь в новой технологии изготовления кузова подчеркивалась низкая масса и стойкость алюминиевых кузовов к коррозии. Иногда упоминались и другие преимущества алюминиевых конструкций: например, особенные акустические свойства кузовов и пассивная безопасность конструкций из объемной штамповки и литья.

Список машин, в которых алюминиевые детали составляют не менее 60% массы кузова (не путать с полной массой машины), довольно велик. В первую очередь известны модели Audi, A2, A8, R8 и родственная R8 Lamborghini Gallardo. Менее очевидны Ferrari F430, F360, 612, последние поколения Jaguar XJ X350-X351, XJR, XF, XE и F-Pace. Ценители настоящих спортивных машин вспомнят Lotus Elise, а также соплатформенные Opel Speedster и Tesla Roadster. Особенно дотошные читатели припомнят Honda NSX, Spyker и даже Mercedes SLS.

На фото: алюминиевая пространственная рама Audi A2

Часто ошибочно к числу алюминиевых относят современные Land Rover, Range Rover, BMW последних серий и некоторые другие премиум-модели, но там общая доля алюминиевых деталей не так уж велика, а каркас кузова по-прежнему из сталей – обычных и высокой прочности. Цельноалюминиевых машин немного, и большая часть из них – это сравнительно малосерийные конструкции.

Но как же так? Почему при всех своих достоинствах алюминий не применяется максимально широко в строении кузова?

Казалось бы, можно выиграть на массе, а разница в цене материалов не так уж критична на фоне других составляющих стоимости дорогой машины. Тонна «крылатого» стоит сейчас 1 600 долларов – это не так уж много, особенно для премиальной машины. Всему есть объяснения. Правда, для понимания вопроса опять придется немного углубиться в прошлое.

Как алюминий проиграл пластику и стали

Восьмидесятые годы двадцатого века войдут в историю автомобилестроения как время, когда сформировались основные бренды на мировом рынке и создалось соотношение сил, которое мало изменилось и по сей день. Новой крови с тех пор добавили автомобильному рынку лишь китайские компании, в остальном же именно тогда появились основные тренды, классы и тенденции в автомобилестроении. Тогда же наметился перелом в использовании в конструкции машины альтернативных материалов, помимо стали и чугуна.

Благодарить за это стоит увеличившиеся ожидания по части долговечности машин, новые нормы по расходу топлива и пассивной безопасности. Ну и, традиционно, развитие технологий, которые все это позволили. Робкие попытки использовать алюминий в узлах, отвечающих за пассивную безопасность, быстро закончились внедрением лишь простейших элементов в виде брусьев для сминаемых зон и декоративных элементов, которые в общей массе кузова составляли несколько процентов.

А вот сражение за конструкции самого кузова было безнадежно проиграно на тот момент. Победу однозначно одержали производители пластика. Простая технология изготовления крупных деталей из пластика изменила дизайн автомобилей в восьмидесятые. Европейцы удивлялись технологичности и «продвинутости» Ford Sierra и VW Passat B3 с их развитым пластиковым обвесом. Формы и материалы радиаторных решеток, бамперов и других элементов со временем стали соответствовать пластиковым деталям – нечто подобное просто немыслимо изготовить из стали или алюминия.

Тем временем конструкция кузовов машин оставалась традиционно стальной. Задачу повышения прочности кузова и снижения массы выполнили переходом на более широкое использование сталей высокой прочности, их масса в составе кузова непрерывно увеличивалась, с нескольких процентов в конце семидесятых годов и до уверенных 20-40% к середине девяностых у передовых конструкций европейских марок и 10-15% у американских авто.

Проблемы с коррозией решили переходом на оцинкованный прокат и новые технологии окраски, которые позволили увеличить срок гарантии на кузов до 6-10 лет. Алюминий же остался не у дел, его содержание в массе машины даже уменьшилось по сравнению с 60-ми годами – сыграл роль нефтяной кризис, когда дороже стали энергоносители, а значит и сам металл. Где возможно, его заменил пластик, а где пластик не годился – снова сталь.

Алюминий наносит ответный удар

Проиграв битву за экстерьер, через десятилетие алюминий отыграл свое под капотом. В 90-е и 2000-е годы производители массово переходили на алюминиевые корпуса КПП и блоки цилиндров, а затем и детали подвески. Но это было только начало.

Читать еще:  Самодельные спорткары La Bala Стива Грабера

Падение цен на алюминий в девяностые годы удачно совпало с ужесточением требований к экономичности и экологичности машин. Помимо уже упомянутых крупных узлов, алюминий прописался во множестве деталей и агрегатов машины, особенно имеющих отношение к пассивной безопасности – кронштейнах рулевого управления, балках-усилителях, опорах моторов. Пригодилась и его природная хрупкость, и широкий диапазон изменения вязкости, и низкая масса.

Дальше – больше, алюминий стал появляться и в конструкции кузова. Про цельноалюминиевые Audi A8 я рассказывал подробно, но и на более простых машинах стали появляться внешние панели из легкого металла. В первую очередь это навесные панели, капот, передние крылья и двери на авто премиальных марок. Легкосплавными стали подрамники, брызговики и даже усилители. На современных BMW и Audi в передней части кузовов остался практически один алюминий и пластик. Единственное, где позиции стали пока незыблемы – это силовые конструкции.

Про минусы и коррозию

Алюминий – это всегда сложности со сваркой и крепежом. Для соединения со стальными элементами подходят только клепка, болты и склейка, для соединения с другими алюминиевыми деталями – еще сварка и шурупы. Немногие примеры конструкций с использованием легкосплавных несущих элементов проявили себя весьма капризными в эксплуатации и отменно неудобными в восстановлении.

Так, алюминиевые чашки передней подвески на машинах BMW и лонжероны до сих пор имеют сложности с электрохимической коррозией в местах стыков и проблемы с восстановлением соединений после повреждений кузова.

Что касается коррозии алюминия, то бороться с ней даже сложнее, чем с коррозией стали. При более высокой химической активности его стойкость к окислению объясняется в основном образованием защитной пленки окислов на поверхности. А этот способ самозащиты в условиях соединения деталей из кучи разных сплавов оказался бесполезен.

Сложности со сталью, которые могут изменить все

Пока алюминий захватывал новые территории, технологии производства стального проката не стояли на месте. Стоимость высокопрочных сталей снижалась, появились массовые стали горячей штамповки, антикоррозийная защита пусть и с пробуксовками, тоже улучшалась.

Но алюминий все же наступает, и причины этого понятны всем, кто знаком с процессом штамповки и сварки стальных деталей. Да, более прочные стали позволяют облегчить кузов машины и сделать его крепче и жестче. Обратная сторона медали – повышение стоимости самой стали, увеличение цены штамповки, рост цены сварки и сложности с ремонтом поврежденных деталей. Ничего не напоминает? Точно, это те самые проблемы, которые свойственны алюминиевым конструкциям от рождения. Только у высокопрочной стали и традиционные «железные» сложности с коррозией никуда не исчезают.

Еще один минус – сложности рециклинга. В век, когда вещи становятся одноразовыми, о переработке задумываются все чаще и чаще. И высоколегированные стали в этом отношении – плохой пример. Цена алюминия мало зависит от его марки, содержание в сплаве ценных присадок сравнительно невелико, а основные характеристики задаются содержанием кремния. При переплавке добавки хорошо извлекаются для дальнейшего использования. К тому же сравнительно мягкий металл хорошо перерабатывается.

А вот о высокопрочной стали подобного сказать нельзя. Пакет дорогих легирующих добавок при переработке неизбежно теряется. Более того, он загрязняет вторичное сырье и требует дополнительных расходов по его очистке. Цена на простые марки стали и высокопрочные различается в разы, и при повторном использовании железа вся эта разница будет утеряна.

Что дальше?

Судя по всему, нас ждет алюминиевое будущее. Как вы уже поняли, исходная стоимость сырья не играет сейчас такой роли, как технологичность и экологичность. Набирающее силу «зеленое» лобби способно влиять на популярность алюминиевых машин еще множеством способов, от удачного пиара до уменьшенного сбора на утилизацию. В итоге имидж премиальных брендов требует более широкого использования алюминия и популяризации технологий в массах, с максимальной выгодой для себя, разумеется.

Стальные конструкции остаются уделом дешевых производителей, но по мере удешевления алюминиевых технологий они, несомненно, тоже не устоят перед соблазном, тем более что теоретическое преимущество алюминия можно и даже нужно реализовать. Пока автопроизводители не пытаются форсировать этот переход – конструкции кузовов большинства машин содержат не больше 10-20% алюминия.

То есть «алюминиевое будущее» не придет ни завтра, ни послезавтра.

У традиционного стального кузовостроения впереди виднеется кузовостроительный тупик, избежать которого можно, только переломив тренды на всемерное упрочнение и облегчение конструкций.

Пока прогресс тормозит технологичность процессов сварки и наличие хорошо отлаженных производственных процессов, которые пока можно недорого адаптировать к новым маркам сталей. Увеличить ток сварки, ввести точный контроль параметров, увеличить усилия сжатия, ввести сварку в инертных средах… Пока такие методы помогают, сталь останется основным элементом конструкции. Перестраивать производство слишком дорого, глобальные изменения очень тяжелы для неповоротливого локомотива промышленности.

А что же стоимость владения автомобилем? Да, она растет, и будет расти дальше. Как мы уже неоднократно говорили, современный автопром развитых стран заточен под быстрое обновление автопарка и состоятельного покупателя с доступом к дешевым кредитам под 2-3% годовых. Про страны с реальной инфляцией 10-15% и зарплатами «среднего класса» в районе 1 000 долларов управленцы корпораций думают далеко не в первую очередь. Придется подстраиваться.

Нюансы полировки листовых изделий из алюминия

Выравнивание плоскости и устранение царапин на листовом металле выполняется с помощью полировальной машины. Последовательность работы:

  1. Подготовительный этап. Поверхность очищают от краски, загрязнений и окиси с помощью металлической щетки. Мягкой тряпкой убирают остатки веществ и пыльный налет;
  2. Шлифовка. Среднезернистым абразивом исправляют визуальные дефекты, шероховатости, глубокие царапины. Далее с применением наждачной бумаги мелкой структуры выравнивают поверхности до идеально гладкого состояния.

Шлифовальная машинка позволяет обработать алюминий до исключительного блеска. Полировочный круг устройства оснащается различными видами насадок в зависимости от характера работ и особенностей материала.

Нюансы работы с помощью шлифовального агрегата:

  • полировочный круг, как и лист обрабатываемого металла, смачивают водой;
  • в результате трения наблюдается нагревание металлической плоскости, под воздействием вращающегося круга ликвидируются шероховатости, образуются мелкие частицы металла и воды в виде кашицы;
  • регулярно с интервалом в 1-2 минуты выключают устройство, промывают под струей воды полировочный диск, смывают частицы образований и на металлическом листе;
  • после нивелирования визуальных дефектов с помощью абразивов, круг шлифовальной машинки оснащается войлочной насадкой и выполняется финишная полировка алюминия.
Читать еще:  Канадец сделал драгстер, стилизованный под Ferrari Enzo

Анодирование в домашних условиях

Окрашивая алюминиевые детали для технических надобностей в чёрный цвет, посредством анодирования, нужно строго соблюдать технологию соответствующего процесса. Сначала готовится насыщенный раствор из пищевой соды и поваренной соли, предварительно определив необходимое количество воды для полного погружения детали. Затем вода делится на две части, отдельно готовится солевой раствор, отдельно растворяется сода, после чего оба состава тщательно перемешиваются. Тем временем, поверхность детали тщательно шлифуется наждачной бумагой, а затем сразу же протирается ацетоном.

На видео: анодирование алюминия в домашних условиях.

Деталь помещается в сосуд с электролитическим раствором, к которому подводится источник питания. И деталь, и сосуд, непременно должны быть из алюминия. Под воздействием электрического тока, окрашиваемый алюминиевый профиль находится до тех пор, пока раствор не приобретен серовато-голубоватый оттенок. После этого готовится раствор из анилинового красителя, воды и уксусной кислоты, который выливается в ёмкость с анодированной деталью. Для многих автомобильных и технических надобностей требуется покраска именно черного цвета, и её относительно легко получить при помощи анодирования.

При всей сложности описания этого процесса, он, пожалуй, самый простой и малозатратный из все ранее перечисленных. Он пользуется заслуженной и проверенной репутацией, как способ, при котором получается самая прочная, и водостойкая краска, для столь прихотливого металла.

Алюминий прекрасный металл, используемый во многих видах машиностроения, и для нужд авиации, и некоторые сложности в обращении с ним, он с лихвой компенсирует своими техническими качествами.

Андонирование алюминия (1 видео)

Итак приступим, в первую очередь, для этого моддинг гайда, берем кусок алюминия, который мы и будем полировать, и с помощью малярного скоча прикрепляем его к рабочей поверхности — чтобы кусок алюминия держался, но в тоже время его было удобно снимать. Я намотал малярный скотч на рабочую поверхность таким образом чтобы скотч держался на самой поверхности и одновременно держал нашу алюминию деталь, которая будет подвергнута моддингу. Перед тем как вы начнете полировать алюминий с него необходимо снять всю грязь/пыль и отпечатки пальцев — спирт или очищающая жидкость легко справится с этой задачей.

Кусок алюминия приклеен малярным скотчем к рабочей поверхности и ожиает моддинга, в нашем случае полировки

Обратите внимание, что наждачная бумага будет оставаться на месте благородя куску дерева, который закреплен параллельно верстаку, на котором закреплена алюминиевая панель. Между наждачной бумагой и наждачным блоком из дерева я закрепляю мягкую прослойку для обеспечения равномерного прижима наждачной бумаги к алюминиевой панели — чтобы полировка проводилась равномерно и на алюминии небыло задиров.

Наш небольшой верстак, который мы собрали для исполнения этого моддинг гайда по полировке алюминия

Для выполнения полировки алюминия по данному моддинг гайду я использовал наждачную бумагу с абразивностью 100, 180, 240 — использование наждачной бумаги разного «калибра» позволяет получить требуемую нам текстуру. Очень важно: двигайте наждаком только в одном направлении (если сверху-вниз, то только сверху вниз, а не сверху-вниз-снизу-вверх) — это позволит серьезно улучшить качество и внешний вид поверхности алюминия и соответственно всего моддинг проекта. Еще одним секретом повышенного качества является тот факт, что движение наждачной бумаги необходимо начинать до начала алюминиевого листа, а заканчивать — после. В противном случае, если будут старты-стопы на алюминии, то велик шанс получить гетто моддинг или просто некрасивые отметины Также нужна твердая (и прямая) рука — чтобы движение было стабильным и без рывков, т.е. употреблять алкоголь перед началом моддинга я вам не советую ;).

Лист алюминия после длительной полировки

Еще немного полировки и лист алюминия теперь обладает качественной потертой поверхностью

Как говорят поедатели лягушек, вуаля — теперь лист алюминия выглядит как надо Большая часть работы по моддинг гайду завершена. Теперь главное не касайтесь руками поверхности, а то существует большая вероятность, что вы поставите жирные пятна. Чтобы защитить поверхность алюминия (мы ведь хотим чтобы детали в наших моддинг проектах были износостойкими?), а также придать ей дополнительного блеска, я покрыл алюминий тремя слоями прозрачного глянцевого лака для легкосплавных автомобильных дисков, кстати перед этим не помешает протереть алюминий от пыли и обезжирить его поверхность. Рекомендую и вам покрывать полированный алюминий прозрачным лаком в ваших моддинг проектах.

Чтобы при полировки алюминия на поверхности небыло темных полос, а текстура была более равномерной, попробуйте немного переставить/развернуть наждачную бумагу чтобы она не протирала бороздки в одном и том же месте. При этом направление движения наждачной бумаги должно сохранятся — это важно, иначе может выйти хуита моддинг в стиле гетто.

Пример алюминиевого листа с неравномерной полировкой, красивый моддинг проект с ним сделать сделать будет сложно

Иногда полировка, как в нашем моддинг гайде, оставляет острый край на куске алюминия, лучший способ избавиться от него — это полировать немного больший кусок алюминия, чем требуется, а потом подрезать его по нужному размеру. Такой подход в моддинге более оправдан.

Алюминиевая панель вскрытая лаком с прорезанным вентиляционным отверстием (блоухолом)

Как изгибать детали из дюралюминия и силумина?

При попытке согнуть алюминий марки Д16Т (дюралюминий) и силумин листы могут трескаться. Чтобы сохранить целостность металлического листа, нужно провести предварительную термообработку. Для этого заготовка из дюралюминия разогревается до появления красного оттенка. Помещение должно быть тёмным, чтобы увидеть изменение цвета и не перегреть сплав. После нагревания нужно дать металлу остыть при комнатной температуре. Далее можно сгибать лист без боязни повредить его.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×