Promlebedka.ru

Авто ДРайв
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает дизельный двигатель автомобиля

Как работает дизельный двигатель автомобиля

Согласно сложившимся представлениям, дизельные двигатели производят много шума, неприятно пахнут и не дают нужной мощности. Считается, что они пригодны лишь для грузовых автомобилей, фургонов и такси. Возможно, в 1980-х гг. все было так, однако с тех пор ситуация в корне поменялась. Дизельные двигатели и органы управления системами впрыска топлива стали гораздо более совершенными. В 1985г. в Великобритании было продано почти 65 000 автомобилей с дизельными двигателями (примерно 3,5% от общего количества проданных автомобилей). Для сравнения, в 1985г. было продано всего 5380. (данные, вероятно, для рынка США).

Основные части дизельного двигателя должны быть прочнее, чем части двигателя, работающего на бензине.

Зажигание. Для зажигания не требуются искры, т.к. смесь воспламеняется под действием компрессии.

Запальные свечи. Нагревают камеру сгорания при холодном старте.

Многие дизельные двигатели были созданы на основе бензиновых двигателей, однако их основные детали обладают повышенной прочностью и способны выдерживать высокое давление.

Топливо попадает в двигатель за счет нагнетательного насоса с дозатором, который обычно прикреплен к боку блока цилиндров. В системе не используется электрическое зажигание.

Основным преимуществом дизельных двигателей перед бензиновыми является снижение эксплуатационных расходов. Дизельные двигатели обладают большей эффективностью за счет сильной компрессии и низкой стоимости топлива. Разумеется, цены на дизель могут варьироваться, поэтому автомобиль с дизельным двигателем обойдется вам дорого, если вы живете в регионе с высокими ценами на дизельное топливо. Кроме того, таким автомобилям реже требуется техобслуживание, однако замена масла для них организуется чаще, чем для автомобилей, которые работают на бензине.

Определение воспламеняемости дизельного топлива

Воспламеняемость дизельного топлива выражается с помощью цетанового числа (CZ). Оно означает, что дизельное топливо имеет такую же склонность к воспламенению, что и определенная сравнительная смесь из цетана и a-метилнафталина. Легковоспламеняемым реагентом смеси является цетан. Он имеет цетановое число 100, в то время как л-метилнафталин — цетановое число 0. Таким образом, например, цетановое число CZ = 55 означает, что дизельное топливо имеет такую же склонность к воспламенению, что и сравнительная смесь из 55% (объемных долей) цетана и 45% (объемных долей) a-метилнафталина. Воспламеняемость повышается при росте цетанового числа.

Определение цетанового числа выполняется так же, как и определение октанового числа бензина с помощью эталонного двигателя, специально предназначенного для этих замеров. Используются двигатель для оценки детонационной стойкости бензинов по методу компании «BASF» и стандартный двигатель для оценки детонационной стойкости топливных материалов — одноцилиндровые четырехтактные дизельные двигатели с устройством для регулирования конечного давления сжатия. В то время, как в двигателе компании «BASF» конечное давление сжатия регулируется с помощью ограничения впускаемого воздуха, в стандартном двигателе регулировка выполняется путем изменения степени сжатия.

Ниже измерение цетанового числа 1952/54 описывается на примере испытательного двигателя, разработанного компанией «BASF» — четырехтактного дизельного двигателя с вихревой камерой сгорания и системой испарительного охлаждения. Он работаете частотой вращения коленчатого вала приблизительно 1000 мин а тормозной генератор создает момент сопротивления. Сначала в двигатель подается исследуемое дизельное топливо. Впрыскиваемое количество должно быть отрегулировано согласно расходу 8 ± 0,3 см3/мин, а момент впрыскивания — на 20° угла поворота коленчатого вала к верхней мертвой точке. Во впускном коллекторе двигателя установлена дроссельная заслонка, а перед ней — измерительный диффузор. подключенный к вакуумметру. Дроссельная заслонка закрывается, уменьшая тем самым давление сжатия, пока задержка воспламенения дизельного топлива не будет равна 20° угла поворота коленчатого вала к верхней мертвой точке, а горение не начнется точно в верхней мертвой точке поршня. Величина разрежения отображается на дисплее вакуумметра. Воспламеняемость дизельного топлива высока, когда разрежение имеет низкое значение. Тогда через диффузор проходит лишь небольшое количество воздуха, и конечное давление сжатия — низкое.

По окончании измерения дизельного топлива впрыскиваются две сравнительные смеси при тех же условиях. Цетановое число сравнительных смесей должно различаться всего на четыре единицы. Кроме того, цетановое число дизельного топлива должно находиться в диапазоне между цетановыми числами двух сравнительных смесей. На основании зафиксированных показаний вакуумметра цетановое число дизельного топлива рассчитывается посредством линейной интерполяции и округляется до целого числа.

Цетановые числа современного дизельного топлива составляют 50-55 единиц.

Принцип работы дизельного двигателя

Многие люди смогут отличить работу дизельного двигателя по его характерному шуму при работе и характерному черному дыму из выхлопной трубы. Но стоит спросить о возможной причине стука или дыма, и единицы смогут дать точный и верный ответ. Первым шагом при диагностировании неисправностей является знание и понимание основных принципов работы дизеля.

Дизельные двигатели схожи по конструкции с бензиновыми двигателями и тоже работают по двух- или четырехтактным циклам. Только есть существенное отличие: двухтактные бензиновые двигатели применяются на маленьких и легких агрегатах, например как мопед, бензопила, маленькая моторная лодка, а 2-тактные дизеля используются в основном для очень крупных и низкооборотных агрегатов, например судовых двигателей.

Всасывание и воспламенение.

Главные отличия дизеля от бензинового ДВС — это подача топливовоздушной смеси в рабочий цилиндр и способ воспламенения. В бензиновом двигателе бензин смешивается с воздухом до того, как смесь попадает в цилиндр, далее образованная смесь поджигается в нужный момент свечой зажигания. Практически во всех режимах дроссельная заслонка дозирует воздушный поток и, соответственно, поступающую в двигатель смесь.

В дизель воздух поступает в цилиндр раздельно с топливом и после сжимается. Из-за большой степени сжатия (компрессия 20:1), воздух разогревается до температуры больше 700°С. В момент, когда поршень поднимается в ВМТ (конец сжатия), топливо под большим давлением подается в камеру сгорания в распыленном состоянии. Солярка смешивается с разогретым воздухом и происходит воспламенение топливовоздушной смеси. При сгорании смеси выделяется энергия, которая двигает поршень вниз и начинается рабочий ход. При низкой температуре воздуха снижается текучесть дизельного топлива, обусловленная образованием парафина. Из-за этого солярка становится густой и забивает поры топливного фильтра. Фирмы-производители дизтоплива добавляют в него особые присадки, повышающие текучесть топлива, тем самым гарантируя надежный пуск до температуры -22°С. Если при похолодании в баке залито летнее топливо, в бак следует добавить специально предназначенную разжижающую присадку. При запуске в холодную погоду температура сжимаемого воздуха в цилиндре может быть недостаточной для возгорания топлива. Это решается с помощью системы предварительного подогрева. Двигатели могут оснащаться системой предварительного подогревания. В ней используются электрические свечи накала, нагревающие воздух в камерах сгорания перед и во время запуска двигателя. В большинстве дизельных ДВС не используется дроссельная заслонка во впускном коллекторе. Исключением являются двигатели, в которых установлен пневматический регулятор, его работа основана на разрежении во впускном коллекторе. Также дроссельная заслонка редко используется для работы усилителя тормозов, для этого применяется отдельный вакуумный насос. Самое явное преимущество дизельного двигателя состоит в том, что из-за большой степени сжатия поступающего воздуха, дизель является намного термоэффективным двигателем. Это означает, что он выдаст большую мощность от заданного объема топлива. Результатом является: авто с дизельным двигателем проедет большее расстояние на данном количестве топлива, чем аналогичный автомобиль с бензиновым ДВС с тем же рабочим объемом.

Читать еще:  Зажигание ваз 2110 карбюратор 8 клапанов

История дизельного двигателя.

В 1890 году Рудольф Дизель обосновал теорию «экономичности термического двигателя», который согласно большому давлению в цилиндрах значительно повышает свое КПД. Хоть Дизель и был первым, кто собрал и запатентовал двигатель с воспламенением от сильного сжатия, инженер Экройд Стюарт до этого высказывал подобные идеи. Он создал двигатель, в котором воздух затягивался в цилиндр, далее сжимался, а после нагнетался в емкость, в которую затем впрыскивалось топливо. Для пуска двигателя емкость снаружи нагревалась лампой, а после запуска работа поддерживалась без тепла, подводимого снаружи.

Экройд Стюарт не увидел главного преимущества от высокой степени сжатия, он всего лишь экспериментировал с вероятностью исключить свечи зажигания из двигателя, т.е. он не принял во внимание самое важное преимущество – топливную экономию и эффективность. Может, это и явилось причиной того, что до сих пор используют термин «дизельный двигатель», «двигатель Дизеля», или просто «дизель», т.к. теория Р. Дизеля явилась основой для проектирования современных силовых агрегатов с воспламенением от сильного сжатия. В дальнейшем около 30 лет подобные двигатели очень широко применялись в штатных механизмах и силовых агрегатах морских судов, но существовавшие в то время системы впрыска не позволяли применять дизель в высоко-оборотистых механизмах. Низкая скорость вращения, большой вес компрессора, требуемого для работы системы впрыска, делали невозможным применение первых дизельных двигателей на автомобильном транспорте.

В 20-е годы XX столетия инженер из Германии Роберт Бош доработал встроенный топливный насос, агрегат, который широко используется и по сей день. Применение гидравлической системы для подачи и впрыска топлива позволило не использовать отдельный воздушный компрессор и позволило в дальнейшем увеличить скорость вращения. Востребованный высоко-оборотистый дизель стал пользоваться огромной популярностью как двигатель для общественного и вспомогательного транспорта, но доводы в сторону двигателей с электрическим зажиганием позволяли им пользоваться огромным спросом для установки на пассажирских авто и малых грузовиках. В 50-е и 60-е годы дизель ставится в больших объемах на грузовики и фургоны, а в 70-е годы после сильного подъема цен на топливо, к нему обращают свое внимание мировые производители дешевых небольших пассажирских авто.

В последующие годы растет популярность дизеля на легковых и грузовых машинах, не только из-за долговечности и экономичности дизеля, а также из-за малой токсичности отработанных газов. Все основные европейские авто-производители в настоящее время предлагают модели с дизельным силовым агрегатом.

Как работает дизель.

В первом такте (впуск), поршень опускается вниз, порция воздуха затягивается в цилиндр через впускной клапан.

Во втором такте (сжатие), поршень поднимается вверх, впускной и выпускной клапана закрыты, воздух сжимается в среднем в 17 раз (от 14 до 24), т.е. начальный объем уменьшатся в 17 раз, и воздух сильно нагревается.

В начале третьего такта (рабочий ход) поршень опять опускается вниз, топливо поступает в камеру сгорания через форсунки. Топливо распыляется на мельчайшие частицы, смешивающиеся со сжатым воздухом для образования самовоспламеняющейся смеси. При движении поршня энергия сгорания высвобождается.

Выпускной клапан открывается, в начале четвертого такта (выпуск) поршень поднимается вверх, и отработанные газы выходят через выпускной клапан.

Плюсы и минусы дизельных двигателей.

Бензиновый двигатель очень неэффективен и преобразует в полезную работу не более 26% энергии топлива. Дизельный же двигатель имеет КПД равный 36%. Дизельное топливо обычно дешевле.

Отсутствие электрического зажигания является преимуществом для всех видов двигателей, увеличивается надежность, уменьшается токсичность выхлопных газов, что особенно важно. Дизельный силовой агрегат выдает большой крутящий момент в наиболее широком диапазоне оборотов, что наделяет дизельный автомобиль большей «гибкостью» при движении. Это является неоспоримым преимуществом и в корабельных двигателях , т.к. большой крутящий момент при малых оборотах облегчает эффективное применение мощности двигателя.

Есть и иные преимущества. Выхлопные газы дизеля являются более «чистыми» по сравнению с газами, выделяемыми бензиновым двигателем. Окиси углерода практически нет в отработанных газах дизеля, поэтому ядовитыми газами, являются углеводороды, окислы азота и сажа (тот самый четный дым). Они приводят к астме и заболеваниям легких. Больше всего “чадят” атмосферу дизели автобусов и грузовиков, которые являются старыми и часто не отрегулированными.

Концентрация углекислого газа может быть уменьшена с помощью ЕСК — системы рециркуляции отработавших газов. Данная система забирает часть отработанных газов из выпускного коллектора через патрубок во впускной коллектор. Процесс контролируется специальным клапаном, и благодаря снижению температуры сгорания, концентрация углекислоты снижается. Для значительного снижения выбросов углеводородов и углекислот используются каталитические нейтрализаторы окислительного типа. Касательно остающейся серы, качественное и профессиональное обслуживание дизельных силовых агрегатов, в сочетании с отделителями частиц, помогает минимизировать черный дым.

Прочим важным вопросом, касающимся безопасности, является то, что дизтопливо нелетучее, и, таким образом, возможность возгорания дизельных двигателей очень мала.

Безусловно, есть и недостатки, среди них характерный стук при работе и «жирное» топливо и некоторые проблемы с заведением зимой. Но они замечаются только владельцами “дизелей”, а для постороннего человека практически не видны.

Базовая конструкция дизельного двигателя аналогична бензиновому двигателю. Одинаковые узлы и агрегаты у дизеля обычно увесистее и более устойчивы к высокому давлению, имеющему место у дизеля. Поршневые головки специально спроектированы под особенности работы в дизельных двигателях и часто под завышенную степень сжатия. А еще головки поршней находятся немного выше верхней поверхности блока цилиндров в момент, когда поршень находится в ВМТ своего хода. В большинстве случаев головки поршней содержат в себе и саму камеру сгорания.

Степень сжатия — это соотношение рабочего объема над поршнем, когда он находится в своей НМТ к объему, когда поршень находится в своей верхней мертвой точке. Поршни, применяемые на дизельных двигателях малого объема, почти всегда спроектированы так, чтобы они выступали над верхней поверхностью блока цилиндров, когда сам поршень находится в ВМТ. Когда ДВС собран, величину выступа следует проверить и правильно отрегулировать, если она не соответствует допускам завода-изготовителя. Величина выступания крайне важна для нужной степени сжатия и в то же время обеспечивает, чтобы клапаны не сталкивались с головками поршней. Данная высота выступания проверяется проворачиванием коленвала вручную, медленно подводя к ВМТ, высота замеряется с помощью спецприборов. На некоторых силовых агрегатах малого объема присутствует набор прокладок разной толщины. В различных случаях на края прокладок нанесены насечки, она предназначены для легкости определения толщины прокладки. Необходимая толщина подбирается для обеспечения точного выступания над плоскостью прокладки при монтаже, а не над самой плоскостью блока цилиндров. Необходимо руководствоваться инструкцией по конкретному двигателю для правильного определения толщины прокладки. Для прочих двигателей также можно подбирать и сими поршни. Затем для верной установки следует изменить вертикальный размер поршней и подобрать их нужного размера, обеспечив правильное выступание. Если на старых двигателях с большим объемом выступание значительное, головки поршней могут обрабатываться механически.

Читать еще:  Как надеть хомут на пыльник шруса

Механизм привода впускных и выпускных клапанов обычный, так же как и привод распределительного вала с тем отличием, что распредвал вращает и ТНВД на некоторых двигателях. Обычно привод с зубчатым ремнем, цепной или на шестернях.

Топливный насос в движение приводится промежуточной шестерней, которая приводит в действие также и распределительный вал. Главные отличия между дизельными и бензиновыми ДВС состоят в подаче воздуха, в которой отсутствует дроссельная заслонка в составе камер сгорания и наличии топливного насоса высокого давления или насос-форсунок на месте трамплера и карбюратора или инжекторной системы впрыска бензина. В классических бензиновых двигателях с впрыском, бензин подается во впускной коллектор при малом давлении в топливной рампе и смешивается с воздухом перед цилиндрами. В дизельных и в некоторых бензиновых двигателях топливо подается под большим давлением непосредственно в сами цилиндры. Большая часть дизельных двигателей относятся к виду с неразделенной камерой сгорания (непосредственный впрыск). Они имеют простую плоскую ГБЦ с камерой сгорания, образуемой в самой головке поршня — образуется вихрь из поступающего воздухе благодаря специальной конструкции впускного коллектора. Данные двигатели лучше запускаются и экономичнее работают, но более шумные и не обеспечивают полного сгорания, что является источником образования черного дыма из выхлопной трубы. В двигателях с непосредственным впрыском применяются форсунки с распылителями, чтобы лучше распределять топливо по всему объему камеры сгорания.

Из-за постоянной конкуренции с бензиновыми двигателями, большинство дизелей имели предкамерный тип впрыска, в котором сгорание смеси начинается предкамере).

Опять следует отметить вихрь воздуха, поступаемого в предкамеру. Предкамера находится внутри ГБЦ, и форсунка входит в нее. Данные двигатели не дают экономии топлива, как у силовых агрегатов с непосредственным впрыском, и они тяжелее заводятся в холоде. Но они тише и мягче работают, что является одним из главных условий для автомобильного дизельного двигателя.

В попытках достичь лучших результатов последним явилась система впрыска «коммон-рэил», которая отличается от прочих систем непосредственного впрыска. В то время как стандартные системы создают давление для каждой форсунки заново, у разработанной системы давление дизтоплива поддерживается в общей топливной рампе и разделяется по форсункам. Электрическая система управления двигателем с ЭБУ изменяет давление до 1350 бар независимо от цикла впрыска в соответствии с количеством оборотов и нагрузкой на двигатель.

Форсунки, оснащенные специальными соленоидными клапанами, могут управляться другим образом. Вместе с большим давлением впрыска, которое существует и на малых оборотах, изменяемый впрыск обеспечивает улучшенное образование горючей смеси топлива в цилиндрах. Результатом является лучшая топливная эффективность и сниженная токсичности выхлопных газов.

Версия для печати

Как с нами связаться

ООО «Чистодел-Дизель»

г. Арамиль, ул. Гарнизон, д. 17В

Географические координаты:

8 800 200 0921

(звонок по РФ бесплатный)

+7 (343) 302-00-43

+7 (343) 345-60-14

ekatdiezelyandex.ru

Устройство топливной системы дизельного двигателя

Принцип работы дизельного двигателя обуславливает важность подачи в камеру сгорания строго дозированной порции смеси в определенный момент времени и под четко рассчитанным давлением. Система впрыска включает в себя следующие основные компоненты.

Топливный насос высокого давления (ТНВД). Этот элемент предназначается для забора порции горючего от расположенного в баке насоса подкачки и поочередной раздачи дозированных порций в индивидуальные трубопроводы форсунок на каждый цилиндр. Конструкция таких распылителей подразумевает их открытие при повышении давления в топливных магистралях. В зависимости от технологических решений различают следующие типы ТНВД:

  • Многоплунжерные рядные. Этот вариант насоса состоит из отдельных секций, по одной на цилиндр. Как правило, блоки имеют рядную сборку. Каждая секция снабжена гильзой и плунжером, который приводится в движение мотором через кулачковый вал. Давление в подаваемом горючем зависит от частоты оборотов коленвала. Специфика конструкции такого насоса обуславливает высокий уровень шума при его работе и сложность в соблюдении актуальных экологических норм.
  • Распределительные. Этот тип насосов поддерживает необходимое давление в соответствии с режимом эксплуатации двигателя и отличаются равномерностью подачи горючего по цилиндрам, а также – стабильной работой на высоких оборотах. Конструкции данного типа имеют один плунжер, который перемещается в двух плоскостях. Поступательные движения обеспечивают нагнетание порции горючего, а вращательные – распределяют его по форсункам. Специфика распределительных насосов обуславливает требовательность к качеству топлива, так как оно служит для смазки трущихся деталей, а прецизионные элементы имеют минимально допустимые зазоры.

Топливные фильтры. Эта деталь дизельного двигателя предназначается для отделения и последующего отвода воды из заправленного в бак горючего, для чего используется сливная пробка в нижней части. Удаление воздуха из системы производится с помощью ручного насоса, расположенного на верхней стороне корпуса. Несмотря на относительную простоту конструкции, фильтр требует внимательного подбора по таким параметрам, как пропускная способность, тонкость очистки и т.д. Для предотвращения забивания кристаллизующимися парафинами и облегчения запуска в холодное время года система может снабжаться электроподогревом.

Турбонаддув. Этот элемент предназначен для нагнетания в цилиндры дополнительного объема воздуха, что позволяет увеличить подачу горючего и повысить мощность силового агрегата. Принцип работы дизельного двигателя подразумевает высокое давление выхлопных газов, которое дает возможность обеспечить эффективность наддува с низких оборотов и при этом избежать эффекта «турбо-ямы». Отсутствие дроссельной заслонки в силовых агрегатах этого типа упрощает схему управления компрессором и позволяет поддерживать эффективность наполнения цилиндров во всем диапазоне оборотов. В первую очередь, наддув позволяет оптимизировать процессы сгорания смеси в ситуациях, в которых атмосферный силовой агрегат будет испытывать нехватку воздуха. Наличие турбины обеспечивает повышение мощности при меньшем рабочем объеме и меньшей массе мотора. При этом снижается жесткость его работы. Установка дополнительного интеркулера – промежуточного охладителя воздуха, позволяет дополнительно повысить мощность силового агрегата на 15% и более за счет увеличения массового наполнения цилиндров.

Специфика работы турбины обуславливает срок ее эксплуатации, значительно меньший, чем ресурс самого дизельного двигателя. При этом, в связи с форсированием, снижается и срок работы силового агрегата, в камерах сгорания которого постоянно поддерживается повышенная температура, требующая охлаждения подаваемым через дополнительные форсунки маслом. Эта конструктивная особенность влечет за собой критическую требовательность мотора к качеству смазочных материалов.

Читать еще:  Ваз 2112 не включается вентилятор охлаждения двигателя

Форсунки. Этот элемент топливной системы предназначен для подачи строго отмеренной дозы горючего в точно рассчитанный момент времени. Появление электронного управления подачей топлива позволило организовать его двухступенчатую подачу неравномерными порциями. При воспламенении первичной дозы повышается температура в камере, после чего в нее поступает основной «заряд» на этот цикл. Такая схема дала возможность исключить скачкообразное нарастание давления и снизить шум работы двигателя. В зависимости от конструкции различают два типа распылителей.

  • Насос-форсунки. Эта конструкция объединяет в себе распылитель и плунжерный насос. Данный элемент устанавливается по одному на каждый цилиндр и приводится в действие толкателем, соединенным с кулачком распредвала. Линии подачи и слива горючего представляют собой технологические каналы в головке блока, благодаря чему может быть достигнуто давление до 2200 бар. Электронный блок управления отвечает за дозирование порции топлива и контроль угла опережения впрыска путем отправки сигналов на запорные пьезоэлектрические или электромагнитные клапаны. Конструкция насос-форсунок позволяет эксплуатировать их в многоимпульсном режиме, совершая от 2 до 4 впрысков за один цикл. Такая технология позволяет смягчить работу силового агрегата и снизить токсичность выхлопа.
  • Common Rail. Эта конструкция представляет собой общую топливную магистраль (рампу), в которой накапливается горючее, после чего по команде электронного управляющего блока впрыскивается через пьезоэлектрические или электромагнитные форсунки. Конструкция данного типа подразумевает применение ТНВД только для нагнетания давления в аккумуляторе, не используя его для регулировки момента впрыска и дозирования порций топлива. Такое конструктивное решение позволило сократить расход горючего до 20% при одновременном возрастании крутящего момента на малых оборотах до 25%. Электронный блок управления распылителями контролирует длительность фазы впрыска и оптимальный момент ее проведения по показателям ряда датчиков – температурного режима мотора, текущей нагрузки на него, давления в рампе, положение педали акселератора и т.д.

Сочетания турбины и системы Common Rail на сегодняшний день считается наиболее эффективным способом увеличения мощности дизельного двигателя при одновременном уменьшении токсичности его выхлопа.

Как выявить стучащую форсунку

Чтобы проверить какие именно форсунки стучат, надо сделать следующее. Поочередно начиная с первого цилиндра надо топливную трубку идущую к форсунке отвернуть и ввернуть вместо форсунки заглушку (если дизель Common Rail) или если имеется запасную форсунку и опустить ее в пластмассовую бутылку. Затем заводим дизель: он будет работать на оставшихся цилиндрах с лишними вибрациями. И если стук от форсунки пропал, значит удалось найти стучащую форсунку. Таким же образом можно проверять даже пару форсунок сразу, так как дизель сможет завестись даже на двух цилиндрах.

Что делать, если компрессия дизельного двигателя сильно снижена?

Если в вашем силовом агрегате сильно снижена компрессия, следует обратиться на СТО с просьбой о диагностике двигателя. Чаще всего при серьезном снижении этого показателя, а также с большим пробегом автомобиля речь идет именно о физическом износе. В таком случае нужно решить, будет ли целесообразным проводить капитальный ремонт агрегата. Многие современные дизельные двигатели получили славу «одноразовых», то есть тонкость стенок цилиндров не позволяет выполнить капитальный ремонт. Потому последовательность действий при обнаружении плохой компрессии должна быть следующей:

  • прекращение эксплуатации автомобиля — если речь не об износе жизненно важных органов двигателя, дальнейшая эксплуатация сделает ремонт дороже;
  • проведение качественной профессиональной диагностики, которая расскажет все о причинах проблемы и способах ее возможного устранения;
  • принятие решения о том, какой способ устранения неполадки будет выбран, а также где и как будет выполняться ремонт вашего силового агрегата;
  • покупка деталей, которые необходимы для проведения восстановительных работ, проверка качества всех купленных элементов;
  • передача машины мастеру, выполняющему специфические работы по капитальному ремонту двигателей, ожидание окончания ремонтных работ;
  • проверка автомобиля путем тщательного исследования визуальных и звуковых особенностей работы, тестирование на дороге с замером расхода топлива.

Вот так выглядит капитальный ремонт силового агрегата дизельного типа, который утратил необходимую компрессию. Практически все двигатели, которые устанавливаются на современные легковые авто, обходятся в ремонте очень дорого. Потому есть и другой вариант восстановления работы силового агрегата. Это покупка контрактного двигателя — подержанного силового агрегата с малым пробегом, привезенного из другой страны. Такой двигатель сделает ваше авто практически новым, но его официальное оформление сегодня предполагает значительные сложности.

Предлагаем посмотреть на видео процесс замера компрессии в силовом агрегате Volvo XC90:

Топливная система в дизельном двигателе

Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.

Важными элементами топливной системы в дизельном двигателе являются:

  • насос высокого давления для подачи топлива (ТНВД);
  • топливный фильтр;
  • форсунки

Топливный насос

Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива – рядные (плунжерные) и распределительные.

Топливный фильтр

Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.

Форсунки

Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок – с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.

Холодный пуск и турбонаддув дизельного двигателя

Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов – свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.

Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.

Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель, не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector